https://github.com/Stick-To/Object-Detection-Tensorflow
Object Detection API Tensorflow
https://github.com/Stick-To/Object-Detection-Tensorflow
centernet detection-api-tensorflow fcos image-augmentor lightheadrcnn object-detection pfpnet rcnn refinedet retinanet ssd tensorflow yolo
Last synced: 5 months ago
JSON representation
Object Detection API Tensorflow
- Host: GitHub
- URL: https://github.com/Stick-To/Object-Detection-Tensorflow
- Owner: Stick-To
- License: mit
- Created: 2019-05-16T13:02:45.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2021-05-02T08:22:25.000Z (almost 4 years ago)
- Last Synced: 2024-08-02T01:16:28.365Z (9 months ago)
- Topics: centernet, detection-api-tensorflow, fcos, image-augmentor, lightheadrcnn, object-detection, pfpnet, rcnn, refinedet, retinanet, ssd, tensorflow, yolo
- Language: Python
- Homepage:
- Size: 228 KB
- Stars: 273
- Watchers: 15
- Forks: 92
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - Stick-To/Object-Detection-Tensorflow - To/Object-Detection-Tensorflow?style=social"/> : Object Detection API Tensorflow. (Other Versions of YOLO)
- awesome-yolo-object-detection - Stick-To/Object-Detection-Tensorflow - To/Object-Detection-Tensorflow?style=social"/> : Object Detection API Tensorflow. (Other Versions of YOLO)
README
# Object-Detection-API-Tensorflow
# Features
## Every model is implemented in only one file!
# ModelsYolo2
Yolo3
SSD
RetinaNet
RefineDet
Light Head Rcnn
PFPNet
CenterNet
FCOS
# Train your own data
# Train your own data
## 1. TFRecord generation1) voc format dataset
2) fill in utils.voc_classname_encoder.py
3) run utils.test_voc_utils.py
## 2. config online image augmentor
fill in dict 'image_augmentor_config' in test-model.py
see utils.image_augmentor.py for details
see https://github.com/Stick-To/Online_Image_Augmentor_tensorflow for details
## 3. config modelfill in dict 'config' in test-model.py
## 4. Train
run test-model.pyThe pre-trained vgg_16.ckpt could be downloaded from http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
## 5. Test
run annotated code in test-model.py## 6. ImageNet pretraining
see utils.tfrecord_imagenet_utils.py## 7. different conv backone
https://github.com/Stick-To/Deep_Conv_Backone## 8. Instantiation of result
corresponding repository in https://github.com/Stick-To
# Experimental Environment
python3.7 tensorflow1.13