https://github.com/Suor/funcy
  
  
    A fancy and practical functional tools 
    https://github.com/Suor/funcy
  
functional-programming python utilities
        Last synced: 8 months ago 
        JSON representation
    
A fancy and practical functional tools
- Host: GitHub
- URL: https://github.com/Suor/funcy
- Owner: Suor
- License: bsd-3-clause
- Created: 2012-10-13T00:44:57.000Z (about 13 years ago)
- Default Branch: master
- Last Pushed: 2024-05-01T10:07:23.000Z (over 1 year ago)
- Last Synced: 2024-05-21T01:03:59.338Z (over 1 year ago)
- Topics: functional-programming, python, utilities
- Language: Python
- Homepage:
- Size: 1.04 MB
- Stars: 3,283
- Watchers: 71
- Forks: 141
- Open Issues: 13
- 
            Metadata Files:
            - Readme: README.rst
- Changelog: CHANGELOG
- License: LICENSE
 
Awesome Lists containing this project
- my-awesome-starred - funcy - A fancy and practical functional tools (Python)
- awesome-list - Funcy - A collection of fancy functional tools focused on practicality. (Containers & Language Extentions & Linting / For Python)
- best-of-python - GitHub - 14% open · ⏱️ 19.09.2025): (General Utilities)
- starred-awesome - funcy - A fancy and practical functional tools (Python)
- awesome-technostructure - Suor/funcy
- awesome-python-resources - GitHub - 7% open · ⏱️ 25.08.2022): (函数式编程)
- awesome-technostructure - Suor/funcy
README
          Funcy |Build Status|
=====
A collection of fancy functional tools focused on practicality.
Inspired by clojure, underscore and my own abstractions. Keep reading to get an overview
or `read the docs `_.
Or jump directly to `cheatsheet `_.
Works with Python 3.4+ and pypy3.
Installation
-------------
::
    pip install funcy
Overview
--------------
Import stuff from funcy to make things happen:
.. code:: python
    from funcy import whatever, you, need
Merge collections of same type
(works for dicts, sets, lists, tuples, iterators and even strings):
.. code:: python
    merge(coll1, coll2, coll3, ...)
    join(colls)
    merge_with(sum, dict1, dict2, ...)
Walk through collection, creating its transform (like map but preserves type):
.. code:: python
    walk(str.upper, {'a', 'b'})            # {'A', 'B'}
    walk(reversed, {'a': 1, 'b': 2})       # {1: 'a', 2: 'b'}
    walk_keys(double, {'a': 1, 'b': 2})    # {'aa': 1, 'bb': 2}
    walk_values(inc, {'a': 1, 'b': 2})     # {'a': 2, 'b': 3}
Select a part of collection:
.. code:: python
    select(even, {1,2,3,10,20})                  # {2,10,20}
    select(r'^a', ('a','b','ab','ba'))           # ('a','ab')
    select_keys(callable, {str: '', None: None}) # {str: ''}
    compact({2, None, 1, 0})                     # {1,2}
Manipulate sequences:
.. code:: python
    take(4, iterate(double, 1)) # [1, 2, 4, 8]
    first(drop(3, count(10)))   # 13
    lremove(even, [1, 2, 3])    # [1, 3]
    lconcat([1, 2], [5, 6])     # [1, 2, 5, 6]
    lcat(map(range, range(4)))  # [0, 0, 1, 0, 1, 2]
    lmapcat(range, range(4))    # same
    flatten(nested_structure)   # flat iter
    distinct('abacbdd')         # iter('abcd')
    lsplit(odd, range(5))       # ([1, 3], [0, 2, 4])
    lsplit_at(2, range(5))      # ([0, 1], [2, 3, 4])
    group_by(mod3, range(5))    # {0: [0, 3], 1: [1, 4], 2: [2]}
    lpartition(2, range(5))     # [[0, 1], [2, 3]]
    chunks(2, range(5))         # iter: [0, 1], [2, 3], [4]
    pairwise(range(5))          # iter: [0, 1], [1, 2], ...
And functions:
.. code:: python
    partial(add, 1)             # inc
    curry(add)(1)(2)            # 3
    compose(inc, double)(10)    # 21
    complement(even)            # odd
    all_fn(isa(int), even)      # is_even_int
    one_third = rpartial(operator.div, 3.0)
    has_suffix = rcurry(str.endswith, 2)
Create decorators easily:
.. code:: python
    @decorator
    def log(call):
        print(call._func.__name__, call._args)
        return call()
Abstract control flow:
.. code:: python
    walk_values(silent(int), {'a': '1', 'b': 'no'})
    # => {'a': 1, 'b': None}
    @once
    def initialize():
        "..."
    with suppress(OSError):
        os.remove('some.file')
    @ignore(ErrorRateExceeded)
    @limit_error_rate(fails=5, timeout=60)
    @retry(tries=2, errors=(HttpError, ServiceDown))
    def some_unreliable_action(...):
        "..."
    class MyUser(AbstractBaseUser):
        @cached_property
        def public_phones(self):
            return self.phones.filter(public=True)
Ease debugging:
.. code:: python
    squares = {tap(x, 'x'): tap(x * x, 'x^2') for x in [3, 4]}
    # x: 3
    # x^2: 9
    # ...
    @print_exits
    def some_func(...):
        "..."
    @log_calls(log.info, errors=False)
    @log_errors(log.exception)
    def some_suspicious_function(...):
        "..."
    with print_durations('Creating models'):
        Model.objects.create(...)
        # ...
    # 10.2 ms in Creating models
And `much more `_.
Dive in
-------
Funcy is an embodiment of ideas I explain in several essays:
- `Why Every Language Needs Its Underscore `_
- `Functional Python Made Easy `_
- `Abstracting Control Flow `_
- `Painless Decorators `_
Related Projects
----------------
- https://pypi.org/project/funcy-chain/
- https://pypi.org/project/funcy-pipe/
Running tests
--------------
To run the tests using your default python:
::
    pip install -r test_requirements.txt
    py.test
To fully run ``tox`` you need all the supported pythons to be installed. These are
3.4+ and PyPy3. You can run it for particular environment even in absense
of all of the above::
    tox -e py310
    tox -e pypy3
    tox -e lint
.. |Build Status| image:: https://github.com/Suor/funcy/actions/workflows/test.yml/badge.svg
   :target: https://github.com/Suor/funcy/actions/workflows/test.yml?query=branch%3Amaster