Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Sxjdwang/TalkLip
https://github.com/Sxjdwang/TalkLip
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/Sxjdwang/TalkLip
- Owner: Sxjdwang
- Created: 2023-03-24T04:46:14.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-11-01T12:29:14.000Z (about 1 year ago)
- Last Synced: 2024-07-31T09:10:29.261Z (6 months ago)
- Language: Python
- Size: 1.05 MB
- Stars: 382
- Watchers: 17
- Forks: 33
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-SOTA-FER - Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert
README
# TalkLip net
This repo is the official implementation of 'Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert', CVPR 2023.
[Arxiv](http://arxiv.org/abs/2303.17480) | [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_Seeing_What_You_Said_Talking_Face_Generation_Guided_by_a_CVPR_2023_paper.pdf)
# 🔥 News
1. We upload a Talking_face_demo.pptx to this repository which contains some demo videos.
2. Fix the GPU out-of-memory error in train.py. Running train.py with a batch_size of 8 requires approximately 24GB of memory. However, in some rare cases, it might need more than 24GB and trigger an error. We have resolved this issue using a try-and-catch mechanism. -- 19/July/2023
3. We upload a checkpoint of the discriminator as requested in the issue.
4. We upload an eval_lrs.sh in the evaluation folder, which allows you to evaluate all metrics on LRS2 with a single command.## Prerequisite
1. `pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html`.
2. Install [AV-Hubert](https://github.com/facebookresearch/av_hubert) by following his installation.
3. Install supplementary packages via `pip install -r requirement.txt`
5. Install ffmpeg. We adopt version=4.3.2. Please double check wavforms extracted from mp4 files. Extracted wavforms should not contain prefix of 0. If you use anaconda, you can refer to `conda install -c conda-forge ffmpeg==4.2.3`
6. Download the pre-trained checkpoint of face detector [pre-trained model](https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth) and put it to `face_detection/detection/sfd/s3fd.pth`. Alternative [link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/prajwal_k_research_iiit_ac_in/EZsy6qWuivtDnANIG73iHjIBjMSoojcIV0NULXV-yiuiIg?e=qTasa8).## Dataset and pre-processing
1. Download [LRS2](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html) for training and evaluation. Note that we do not use the pretrain set.
2. Download [LRW](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html) for evaluation.
3. To extract wavforms from mp4 files:
```
python preparation/audio_extract.py --filelist $filelist --video_root $video_root --audio_root $audio_root
```
- $filelist: a txt file containing names of videos. We provide the filelist of LRW test set as an example in the datalist directory.
- $video_root: root directory of videos. In LRS2 dataset, $video_root should contains directories like "639XXX". In LRW dataset, $video_root should contains directories like "ABOUT".
- $audio_root: root directory for saving wavforms
- other optional arguments: please refer to audio_extract.py4. To detect bounding boxes in videos and save it:
```
python preparation/bbx_extract.py --filelist $filelist --video_root $video_root --bbx_root $bbx_root --gpu $gpu
```
- $bbx_root: a root directory for saving detected bounding boxes
- $gpu: run bbx_extract on a specific gpu. For example, 3.*If you want to accelerate bbx_extract via multi-thread processing, you can use the following bash script:
*Please revise variables in the 2-nd to the 9-th lines to make it compatible with your own machine.
```
sh preprocess.sh
```- $file_list_dir: a directory which contains train.txt, valid.txt, test.txt of LRS2 dataset
- $num_thread: number of threads you used. Please do not let it cross 8 with a 24GB GPU, 4 with a 12GB gpu.Checkpoints
----------
| Model | Description | Link |
| :-------------: | :---------------: | :---------------: |
| TalkLip (g) | TalkLip net with the global audio encoder | [Link](https://drive.google.com/file/d/1iBXJmkS8rjzTBE6XOC3-XiXufEK2f1dj/view?usp=share_link) |
| TalkLip (g+c) | TalkLip net with the global audio encoder and contrastive learning | [Link](https://drive.google.com/file/d/1nfPHicsHr2bOzvkdyoMk_GCYzJ3fqvI-/view?usp=share_link) |
| Lip reading observer 1 | AV-hubert (large) fine-tuned on LRS2 | [Link](https://drive.google.com/file/d/1wOsiXKLOeScrU6XuzebYA6Y-9ncd8-le/view?usp=share_link) |
| Lip reading observer 2 | Conformer lip-reading network | [Link](https://drive.google.com/file/d/16tpyaXLLTYUnIBT_YEWQ5ui6xUkBGcpM/view?usp=share_link) |
| Lip reading expert | lip-reading network for training of talking face generation | [Link](https://drive.google.com/file/d/1XAVhWXjd77UHsfna9O8cASHr3iGiQBQU/view?usp=share_link) |
| Discriminator | Discriminator of GAN | [Link](https://drive.google.com/file/d/17-3fqKCrHzkzyPnHJ_9_MuJ4zCkK5EU-/view?usp=sharing) |## Train
Some AV-Hubert files need to be modified.
```
rm xxx/av_hubert/avhubert/hubert_asr.py
cp avhubert_modification/hubert_asr_wav2lip.py xxx/av_hubert/avhubert/hubert_asr.pyrm xxx/av_hubert/fairseq/fairseq/criterions/label_smoothed_cross_entropy.py
cp avhubert_modification/label_smoothed_cross_entropy_wav2lip.py xxx/av_hubert/fairseq/fairseq/criterions/label_smoothed_cross_entropy.py
```You can train with the following command.
```
python train.py --file_dir $file_list_dir --video_root $video_root --audio_root $audio_root \
--bbx_root $bbx_root --word_root $word_root --avhubert_root $avhubert_root --avhubert_path $avhubert_path \
--checkpoint_dir $checkpoint_dir --log_name $log_name --cont_w $cont_w --lip_w $lip_w --perp_w $perp_w \
--gen_checkpoint_path $gen_checkpoint_path --disc_checkpoint_path $disc_checkpoint_path
```
- $file_list_dir: a directory which contains train.txt, valid.txt, test.txt of LRS2 dataset
- $word_root: root directory of text annotation. Normally, it should be equal to $video_root, as LRS2 dataset puts a video file ".mp4" and its corresponding text file ".txt" in the same directory.
- $avhubert_root: path of root of avhubert (should like xxx/av_hubert)
- $avhubert_path: download the above Lip reading expert and enter its path
- $checkpoint_dir: a directory to save checkpoint of talklip
- $log_name: name of log file
- $cont_w: weight of contrastive learning loss (default: 1e-3)
- $lip_w: weight of lip reading loss (default: 1e-5)
- $perp_w: weight of perceptual loss (default: 0.07)
- $gen_checkpoint_path(optional): enter the path of a generator checkpoint if you want to resume training from a checkpoint
- $disc_checkpoint_path(optional): enter the path of a discriminator checkpoint if you want to resume training from a checkpointNote: Sometimes, discriminator losses may diverge during training (close to 100). Please stop the training and resume it with a reliable checkpoint.
## Test
The below command is to synthesize videos for quantitative evaluation in our paper.
```
python inf_test.py --filelist $filelist --video_root $video_root --audio_root $audio_root \
--bbx_root $bbx_root --save_root $syn_video_root --ckpt_path $talklip_ckpt --avhubert_root $avhubert_root
```
- $filelist: a txt file containing names of all test files, e.g. xxx/mvlrs_v1/test.txt.
- $syn_video_root: root directory for saving synthesized videos
- $talklip_ckpt: a trained checkpoint of TalkLip net## Demo
I update the inf_demo.py on 4/April as I previously suppose that the height and width of output videos are the same when I set cv2.VideoWriter().
Please ensure the sampling rate of the input audio file is 16000 hz.If you want to reenact the lip movement of a video with a different speech, you can use the following command.
```
python inf_demo.py --video_path $video_file --wav_path $audio_file --ckpt_path $talklip_ckpt --avhubert_root $avhubert_root
```
- $video_file: a video file (end with .mp4)
- $audio_file: an audio file (end with .wav)**Please ensure that the input audio only has one channel
## Evaluation
Please follow README.md in the evaluation directory
## Citation
```
@inproceedings{wang2023seeing,
title={Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert},
author={Wang, Jiadong and Qian, Xinyuan and Zhang, Malu and Tan, Robby T and Li, Haizhou},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14653--14662},
year={2023}
}
```