Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/SymbolixAU/jsonify

R package to convert R objects to JSON
https://github.com/SymbolixAU/jsonify

json r rapidjson

Last synced: 2 months ago
JSON representation

R package to convert R objects to JSON

Awesome Lists containing this project

README

        

---
output: github_document
editor_options:
chunk_output_type: console
---

[![R build status](https://github.com/SymbolixAU/jsonify/workflows/R-CMD-check/badge.svg)](https://github.com/SymbolixAU/jsonify/actions)
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/jsonify)](https://CRAN.R-project.org/package=jsonify)
![downloads](http://cranlogs.r-pkg.org/badges/grand-total/jsonify)
[![CRAN RStudio mirror downloads](http://cranlogs.r-pkg.org/badges/jsonify)](https://CRAN.R-project.org/package=jsonify)

```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "# ",
fig.path = "man/figures/README-",
out.width = "100%"
)
library(jsonify)
```

# jsonify

Converts between R objects and JSON.

```{r}
js <- '[{"x":1,"y":"a"},{"x":2,"y":"b"}]'
( df <- from_json( js ) )
( to_json( df ) )

```

### There are already JSON converters, why did you build this one?

Because I wanted it available at the source ( C++ ) level for integrating into other packages.

### What do you mean by "available at the source" ?

I want to be able to call the C++ code from another package, without going to & from R. Therefore, the C++ code is implemented in headers, so you can "link to" it in your own package.

For example, the `LinkingTo` section in **DESCRIPTION** will look something like

```yaml
LinkingTo:
Rcpp,
rapidjsonr (>= 1.2.0),
jsonify
```
And in a c++ source file you can `#include` the header and use the available functions

```c++
#include "jsonify/jsonify.hpp"

Rcpp::StringVector my_json( Rcpp::DataFrame df ) {
return jsonify::api::to_json( df );
}
```

You can see an example of this in my `{geojsonsf}` package

- [Description](https://github.com/SymbolixAU/geojsonsf/blob/master/DESCRIPTION#L17)
- [#include](https://github.com/SymbolixAU/geojsonsf/blob/master/inst/include/geojsonsf/geojson/api/sf_api.hpp#L4)

### Can I call it from R if I want to?

Yes. Just like the examples in this readme use `to_json()`

```{r}
df <- data.frame(
id = 1:3
, val = letters[1:3]
)
jsonify::to_json( df )
```

### Is it fast?

yeah it's pretty good.

```{r, eval = FALSE}

library(microbenchmark)
library(jsonlite)

n <- 1e6
df <- data.frame(
id = 1:n
, value = sample(letters, size = n, replace = T)
, val2 = rnorm(n = n)
, log = sample(c(T,F), size = n, replace = T)
, stringsAsFactors = FALSE
)

microbenchmark(
jsonlite = {
jlt <- jsonlite::toJSON( df )
},
jsonify = {
jfy <- jsonify::to_json( df )
},
times = 3
)

# Unit: seconds
# expr min lq mean median uq max neval
# jsonlite 2.017081 2.063732 2.540350 2.110383 2.801984 3.493585 3
# jsonify 1.186239 1.202719 1.514067 1.219198 1.677981 2.136763 3

microbenchmark(
jsonlite = {
df_jlt <- jsonlite::fromJSON( jlt )
},
jsonify = {
df_jfy <- jsonify::from_json( jfy )
},
times = 3
)

# Unit: seconds
# expr min lq mean median uq max neval
# jsonlite 5.034888 5.149688 5.229363 5.264489 5.326601 5.388713 3
# jsonify 4.551434 4.629683 4.678198 4.707932 4.741579 4.775227 3

n <- 1e4
x <- list(
x = rnorm(n = n)
, y = list(x = rnorm(n = n))
, z = list( list( x = rnorm(n = n)))
, xx = rnorm(n = n)
, yy = data.frame(
id = 1:n
, value = sample(letters, size = n, replace = T)
, val2 = rnorm(n = n)
, log = sample(c(T,F), size = n, replace = T)
)
)

microbenchmark(
jsonlite = {
jlt <- jsonlite::toJSON( x )
},
jsonify = {
jfy <- jsonify::to_json( x )
},
times = 5
)

# Unit: milliseconds
# expr min lq mean median uq max neval
# jsonlite 18.52028 18.82241 19.32112 18.99683 19.18103 21.08508 5
# jsonify 17.72060 18.19092 19.58308 19.52457 21.14687 21.33241 5

microbenchmark(
jsonlite = {
df_jlt <- jsonlite::fromJSON( jlt )
},
jsonify = {
df_jfy <- jsonify::from_json( jfy )
},
times = 3
)

# Unit: milliseconds
# expr min lq mean median uq max neval
# jsonlite 62.53554 62.96435 63.12574 63.39316 63.42084 63.44853 3
# jsonify 42.47449 42.53826 43.38475 42.60204 43.83988 45.07773 3

```

### There's no `Date` type in JSON, how have you handled this?

At its core `Dates` in R are numeric, so they are treated as numbers when converted to JSON. However, the user can coerce to character through the `numeric_dates` argument.

```{r}
df <- data.frame(dte = as.Date("2018-01-01"))
jsonify::to_json( df )

df <- data.frame(dte = as.Date("2018-01-01"))
jsonify::to_json( df, numeric_dates = FALSE )
```

### And `POSIXct` and `POSIXlt`?

The same

```{r}

jsonify::to_json( as.POSIXct("2018-01-01 10:00:00") )
jsonify::to_json( as.POSIXct("2018-01-01 10:00:00"), numeric_dates = FALSE)

```

However, here the **POSIXct** values are returned in UTC timezone. This is by design.

**POSIXlt** will return each component of the date-time

```{r}
x <- as.POSIXlt("2018-01-01 01:00:00", tz = "GMT")
jsonify::to_json( x )

jsonify::to_json( x, numeric_dates = FALSE)
```

### I see factors are converted to strings

Yep. Even though I constructed a `data.frame()` without setting `stringsAsFactros = FALSE`, jsonify automatically treats factors as strings.

### Has this changed from v0.1?

Yes. And it's to keep the data more inline with modern concepts and design patterns.

If you want factors, use `factors_as_string = FALSE` in the `to_json()` call

```{r}
jsonify::to_json( df, factors_as_string = FALSE )
```

### How do I install it?

Get the latest release version from CRAN

```{r, eval = FALSE}
install.packages("jsonify")
```

Or the development version from [GitHub](https://github.com/) with:

```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github("SymbolixAU/jsonify")
```