An open API service indexing awesome lists of open source software.

https://github.com/TencentARC/BrushNet

[ECCV 2024] The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"
https://github.com/TencentARC/BrushNet

diffusion diffusion-models eccv eccv2024 image-inpainting text-to-image

Last synced: about 1 month ago
JSON representation

[ECCV 2024] The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"

Awesome Lists containing this project

README

        

# BrushNet

This repository contains the implementation of the ECCV2024 paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"

Keywords: Image Inpainting, Diffusion Models, Image Generation

> [Xuan Ju](https://github.com/juxuan27)12, [Xian Liu](https://alvinliu0.github.io/)12, [Xintao Wang](https://xinntao.github.io/)1*, [Yuxuan Bian](https://scholar.google.com.hk/citations?user=HzemVzoAAAAJ&hl=zh-CN&oi=ao)2, [Ying Shan](https://www.linkedin.com/in/YingShanProfile/)1, [Qiang Xu](https://cure-lab.github.io/)2*

> 1ARC Lab, Tencent PCG 2The Chinese University of Hong Kong *Corresponding Author


🌐Project Page |
πŸ“œArxiv |
πŸ—„οΈData |
πŸ“ΉVideo |
πŸ€—Hugging Face Demo |

**πŸ“– Table of Contents**

- [BrushNet](#brushnet)
- [πŸ”₯ Update Log](#-update-log)
- [TODO](#todo)
- [πŸ› οΈ Method Overview](#️-method-overview)
- [πŸš€ Getting Started](#-getting-started)
- [Environment Requirement 🌍](#environment-requirement-)
- [Data Download ⬇️](#data-download-️)
- [πŸƒπŸΌ Running Scripts](#-running-scripts)
- [Training 🀯](#training-)
- [Inference πŸ“œ](#inference-)
- [Evaluation πŸ“](#evaluation-)
- [🀝🏼 Cite Us](#-cite-us)
- [πŸ’– Acknowledgement](#-acknowledgement)

## πŸ”₯ Update Log
- [2024/12/17] πŸ“’ πŸ“’ [BrushEdit](https://github.com/TencentARC/BrushEdit) are released, an efficient, white-box, free-form image editing tool powered by LLM-agents and an all-in-one inpainting model.
- [2024/12/17] πŸ“’ πŸ“’ [BrushNetX](https://huggingface.co/TencentARC/BrushEdit/tree/main/brushnetX) (Stronger BrushNet) models are released.

## TODO

- [x] Release trainig and inference code
- [x] Release checkpoint (sdv1.5)
- [x] Release checkpoint (sdxl). Sadly, I only have V100 for training this checkpoint, which can only train with a batch size of 1 with a slow speed. The current ckpt is only trained for a small step number thus perform not well. But fortunately, [yuanhang](https://github.com/yuanhangio) volunteer to help training a better version. Please stay tuned! Thank [yuanhang](https://github.com/yuanhangio) for his effort!
- [x] Release evluation code
- [x] Release gradio demo
- [x] Release comfyui demo. Thank [nullquant](https://github.com/nullquant) ([ConfyUI-BrushNet](https://github.com/nullquant/ComfyUI-BrushNet)) and [kijai](https://github.com/kijai) ([ComfyUI-BrushNet-Wrapper](https://github.com/kijai/ComfyUI-BrushNet-Wrapper)) for helping!
- [x] Release [trainig data](https://huggingface.co/datasets/random123123/BrushData). Thank [random123123](https://huggingface.co/random123123) for helping!
- [x] We use BrushNet to participate in CVPR2024 GenAI Media Generation Challenge Workshop and get top prize! The solution is provided in [InstructionGuidedEditing](InstructionGuidedEditing)
- [x] Release a new version of checkpoint (sdxl).

## πŸ› οΈ Method Overview

BrushNet is a diffusion-based text-guided image inpainting model that can be plug-and-play into any pre-trained diffusion model. Our architectural design incorporates two key insights: (1) dividing the masked image features and noisy latent reduces the model's learning load, and (2) leveraging dense per-pixel control over the entire pre-trained model enhances its suitability for image inpainting tasks. More analysis can be found in the main paper.

![](examples/brushnet/src/model.png)

## πŸš€ Getting Started

### Environment Requirement 🌍

BrushNet has been implemented and tested on Pytorch 1.12.1 with python 3.9.

Clone the repo:

```
git clone https://github.com/TencentARC/BrushNet.git
```

We recommend you first use `conda` to create virtual environment, and install `pytorch` following [official instructions](https://pytorch.org/). For example:

```
conda create -n diffusers python=3.9 -y
conda activate diffusers
python -m pip install --upgrade pip
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
```

Then, you can install diffusers (implemented in this repo) with:

```
pip install -e .
```

After that, you can install required packages thourgh:

```
cd examples/brushnet/
pip install -r requirements.txt
```

### Data Download ⬇️

**Dataset**

You can download the BrushData and BrushBench [here](https://forms.gle/9TgMZ8tm49UYsZ9s5) (as well as the EditBench we re-processed), which are used for training and testing the BrushNet. By downloading the data, you are agreeing to the terms and conditions of the license. The data structure should be like:

```
|-- data
|-- BrushData
|-- 00200.tar
|-- 00201.tar
|-- ...
|-- BrushDench
|-- images
|-- mapping_file.json
|-- EditBench
|-- images
|-- mapping_file.json
```

Noted: *We only provide a part of the BrushData in google drive due to the space limit. [random123123](https://huggingface.co/random123123) has helped upload a full dataset on hugging face [here](https://huggingface.co/datasets/random123123/BrushData). Thank for his help!*

**Checkpoints**

Checkpoints of BrushNet can be downloaded from [here](https://drive.google.com/drive/folders/1fqmS1CEOvXCxNWFrsSYd_jHYXxrydh1n?usp=drive_link). The ckpt folder contains

- BrushNet pretrained checkpoints for Stable Diffusion v1.5 (`segmentation_mask_brushnet_ckpt` and `random_mask_brushnet_ckpt`)
- pretrinaed Stable Diffusion v1.5 checkpoint (e.g., realisticVisionV60B1_v51VAE from [Civitai](https://civitai.com/)). You can use `scripts/convert_original_stable_diffusion_to_diffusers.py` to process other models downloaded from Civitai.
- BrushNet pretrained checkpoints for Stable Diffusion XL (`segmentation_mask_brushnet_ckpt_sdxl_v1` and `random_mask_brushnet_ckpt_sdxl_v0`). A better version will be shortly released by [yuanhang](https://github.com/yuanhangio). Please stay tuned!
- pretrinaed Stable Diffusion XL checkpoint (e.g., juggernautXL_juggernautX from [Civitai](https://civitai.com/)). You can use `StableDiffusionXLPipeline.from_single_file("path of safetensors").save_pretrained("path to save",safe_serialization=False)` to process other models downloaded from Civitai.

The data structure should be like:

```
|-- data
|-- BrushData
|-- BrushDench
|-- EditBench
|-- ckpt
|-- realisticVisionV60B1_v51VAE
|-- model_index.json
|-- vae
|-- ...
|-- segmentation_mask_brushnet_ckpt
|-- segmentation_mask_brushnet_ckpt_sdxl_v0
|-- random_mask_brushnet_ckpt
|-- random_mask_brushnet_ckpt_sdxl_v0
|-- ...
```

The checkpoint in `segmentation_mask_brushnet_ckpt` and `segmentation_mask_brushnet_ckpt_sdxl_v0` provide checkpoints trained on BrushData, which has segmentation prior (mask are with the same shape of objects). The `random_mask_brushnet_ckpt` and `random_mask_brushnet_ckpt_sdxl` provide a more general ckpt for random mask shape.

## πŸƒπŸΌ Running Scripts

### Training 🀯

You can train with segmentation mask using the script:

```
# sd v1.5
accelerate launch examples/brushnet/train_brushnet.py \
--pretrained_model_name_or_path runwayml/stable-diffusion-v1-5 \
--output_dir runs/logs/brushnet_segmentationmask \
--train_data_dir data/BrushData \
--resolution 512 \
--learning_rate 1e-5 \
--train_batch_size 2 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300
--checkpointing_steps 10000

# sdxl
accelerate launch examples/brushnet/train_brushnet_sdxl.py \
--pretrained_model_name_or_path stabilityai/stable-diffusion-xl-base-1.0 \
--output_dir runs/logs/brushnetsdxl_segmentationmask \
--train_data_dir data/BrushData \
--resolution 1024 \
--learning_rate 1e-5 \
--train_batch_size 1 \
--gradient_accumulation_steps 4 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--checkpointing_steps 10000
```

To use custom dataset, you can process your own data to the format of BrushData and revise `--train_data_dir`.

You can train with random mask using the script (by adding `--random_mask`):

```
# sd v1.5
accelerate launch examples/brushnet/train_brushnet.py \
--pretrained_model_name_or_path runwayml/stable-diffusion-v1-5 \
--output_dir runs/logs/brushnet_randommask \
--train_data_dir data/BrushData \
--resolution 512 \
--learning_rate 1e-5 \
--train_batch_size 2 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--random_mask

# sdxl
accelerate launch examples/brushnet/train_brushnet_sdxl.py \
--pretrained_model_name_or_path stabilityai/stable-diffusion-xl-base-1.0 \
--output_dir runs/logs/brushnetsdxl_randommask \
--train_data_dir data/BrushData \
--resolution 1024 \
--learning_rate 1e-5 \
--train_batch_size 1 \
--gradient_accumulation_steps 4 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--checkpointing_steps 10000 \
--random_mask
```

### Inference πŸ“œ

You can inference with the script:

```
# sd v1.5
python examples/brushnet/test_brushnet.py
# sdxl
python examples/brushnet/test_brushnet_sdxl.py
```

Since BrushNet is trained on Laion, it can only guarantee the performance on general scenarios. We recommend you train on your own data (e.g., product exhibition, virtual try-on) if you have high-quality industrial application requirements. We would also be appreciate if you would like to contribute your trained model!

You can also inference through gradio demo:

```
# sd v1.5
python examples/brushnet/app_brushnet.py
```

### Evaluation πŸ“

You can evaluate using the script:

```
python examples/brushnet/evaluate_brushnet.py \
--brushnet_ckpt_path data/ckpt/segmentation_mask_brushnet_ckpt \
--image_save_path runs/evaluation_result/BrushBench/brushnet_segmask/inside \
--mapping_file data/BrushBench/mapping_file.json \
--base_dir data/BrushBench \
--mask_key inpainting_mask
```

The `--mask_key` indicates which kind of mask to use, `inpainting_mask` for inside inpainting and `outpainting_mask` for outside inpainting. The evaluation results (images and metrics) will be saved in `--image_save_path`.

*Noted that you need to ignore the nsfw detector in `src/diffusers/pipelines/brushnet/pipeline_brushnet.py#1261` to get the correct evaluation results. Moreover, we find different machine may generate different images, thus providing the results on our machine [here](https://drive.google.com/drive/folders/1dK3oIB2UvswlTtnIS1iHfx4s57MevWdZ?usp=sharing).*

## 🀝🏼 Cite Us

```
@misc{ju2024brushnet,
title={BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion},
author={Xuan Ju and Xian Liu and Xintao Wang and Yuxuan Bian and Ying Shan and Qiang Xu},
year={2024},
eprint={2403.06976},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

## πŸ’– Acknowledgement

Our code is modified based on [diffusers](https://github.com/huggingface/diffusers), thanks to all the contributors!