Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/TorchEnsemble-Community/Ensemble-Pytorch
A unified ensemble framework for PyTorch to improve the performance and robustness of your deep learning model.
https://github.com/TorchEnsemble-Community/Ensemble-Pytorch
bagging deep-learning deeplearning ensemble ensemble-learning gradient-boosting neural-networks pytorch pytorch-tutorial voting-classifier
Last synced: 3 months ago
JSON representation
A unified ensemble framework for PyTorch to improve the performance and robustness of your deep learning model.
- Host: GitHub
- URL: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch
- Owner: TorchEnsemble-Community
- License: bsd-3-clause
- Created: 2019-09-11T11:44:58.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-06-16T13:18:31.000Z (5 months ago)
- Last Synced: 2024-07-09T08:38:13.454Z (4 months ago)
- Topics: bagging, deep-learning, deeplearning, ensemble, ensemble-learning, gradient-boosting, neural-networks, pytorch, pytorch-tutorial, voting-classifier
- Language: Python
- Homepage: https://ensemble-pytorch.readthedocs.io
- Size: 1.56 MB
- Stars: 1,050
- Watchers: 11
- Forks: 95
- Open Issues: 31
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.rst
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Roadmap: docs/roadmap.rst
Awesome Lists containing this project
README
.. image:: ./docs/_images/badge_small.png
|github|_ |readthedocs|_ |codecov|_ |license|_
.. |github| image:: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/workflows/torchensemble-CI/badge.svg
.. _github: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/actions.. |readthedocs| image:: https://readthedocs.org/projects/ensemble-pytorch/badge/?version=latest
.. _readthedocs: https://ensemble-pytorch.readthedocs.io/en/latest/index.html.. |codecov| image:: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch/branch/master/graph/badge.svg?token=2FXCFRIDTV
.. _codecov: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch.. |license| image:: https://img.shields.io/github/license/TorchEnsemble-Community/Ensemble-Pytorch
.. _license: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/blob/master/LICENSEEnsemble PyTorch
================A unified ensemble framework for pytorch_ to easily improve the performance and robustness of your deep learning model. Ensemble-PyTorch is part of the `pytorch ecosystem `__, which requires the project to be well maintained.
* `Document `__
* `Experiment `__Installation
------------.. code:: bash
pip install torchensemble
Example
-------.. code:: python
from torchensemble import VotingClassifier # voting is a classic ensemble strategy
# Load data
train_loader = DataLoader(...)
test_loader = DataLoader(...)# Define the ensemble
ensemble = VotingClassifier(
estimator=base_estimator, # estimator is your pytorch model
n_estimators=10, # number of base estimators
)# Set the optimizer
ensemble.set_optimizer(
"Adam", # type of parameter optimizer
lr=learning_rate, # learning rate of parameter optimizer
weight_decay=weight_decay, # weight decay of parameter optimizer
)
# Set the learning rate scheduler
ensemble.set_scheduler(
"CosineAnnealingLR", # type of learning rate scheduler
T_max=epochs, # additional arguments on the scheduler
)# Train the ensemble
ensemble.fit(
train_loader,
epochs=epochs, # number of training epochs
)# Evaluate the ensemble
acc = ensemble.evaluate(test_loader) # testing accuracySupported Ensemble
------------------+------------------------------+------------+---------------------------+-----------------------------+
| **Ensemble Name** | **Type** | **Source Code** | **Problem** |
+==============================+============+===========================+=============================+
| Fusion | Mixed | fusion.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Voting [1]_ | Parallel | voting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Neural Forest | Parallel | voting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Bagging [2]_ | Parallel | bagging.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Gradient Boosting [3]_ | Sequential | gradient_boosting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Snapshot Ensemble [4]_ | Sequential | snapshot_ensemble.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Adversarial Training [5]_ | Parallel | adversarial_training.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Fast Geometric Ensemble [6]_ | Sequential | fast_geometric.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Soft Gradient Boosting [7]_ | Parallel | soft_gradient_boosting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+Dependencies
------------- scikit-learn>=0.23.0
- torch>=1.4.0
- torchvision>=0.2.2Reference
---------.. [1] Zhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. CRC press, 2012.
.. [2] Breiman, Leo. Bagging Predictors. Machine Learning (1996): 123-140.
.. [3] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics (2001): 1189-1232.
.. [4] Huang, Gao, et al. Snapshot Ensembles: Train 1, Get M For Free. ICLR, 2017.
.. [5] Lakshminarayanan, Balaji, et al. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. NIPS, 2017.
.. [6] Garipov, Timur, et al. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS, 2018.
.. [7] Feng, Ji, et al. Soft Gradient Boosting Machine. ArXiv, 2020.
.. _pytorch: https://pytorch.org/
.. _pypi: https://pypi.org/project/torchensemble/
Thanks to all our contributors
------------------------------|contributors|
.. |contributors| image:: https://contributors-img.web.app/image?repo=TorchEnsemble-Community/Ensemble-Pytorch
.. _contributors: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/graphs/contributors