Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/TorchEnsemble-Community/Ensemble-Pytorch

A unified ensemble framework for PyTorch to improve the performance and robustness of your deep learning model.
https://github.com/TorchEnsemble-Community/Ensemble-Pytorch

bagging deep-learning deeplearning ensemble ensemble-learning gradient-boosting neural-networks pytorch pytorch-tutorial voting-classifier

Last synced: 2 months ago
JSON representation

A unified ensemble framework for PyTorch to improve the performance and robustness of your deep learning model.

Awesome Lists containing this project

README

        

.. image:: ./docs/_images/badge_small.png

|github|_ |readthedocs|_ |codecov|_ |license|_

.. |github| image:: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/workflows/torchensemble-CI/badge.svg
.. _github: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/actions

.. |readthedocs| image:: https://readthedocs.org/projects/ensemble-pytorch/badge/?version=latest
.. _readthedocs: https://ensemble-pytorch.readthedocs.io/en/latest/index.html

.. |codecov| image:: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch/branch/master/graph/badge.svg?token=2FXCFRIDTV
.. _codecov: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch

.. |license| image:: https://img.shields.io/github/license/TorchEnsemble-Community/Ensemble-Pytorch
.. _license: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/blob/master/LICENSE

Ensemble PyTorch
================

A unified ensemble framework for pytorch_ to easily improve the performance and robustness of your deep learning model. Ensemble-PyTorch is part of the `pytorch ecosystem `__, which requires the project to be well maintained.

* `Document `__
* `Experiment `__

Installation
------------

.. code:: bash

pip install torchensemble

Example
-------

.. code:: python

from torchensemble import VotingClassifier # voting is a classic ensemble strategy

# Load data
train_loader = DataLoader(...)
test_loader = DataLoader(...)

# Define the ensemble
ensemble = VotingClassifier(
estimator=base_estimator, # estimator is your pytorch model
n_estimators=10, # number of base estimators
)

# Set the optimizer
ensemble.set_optimizer(
"Adam", # type of parameter optimizer
lr=learning_rate, # learning rate of parameter optimizer
weight_decay=weight_decay, # weight decay of parameter optimizer
)

# Set the learning rate scheduler
ensemble.set_scheduler(
"CosineAnnealingLR", # type of learning rate scheduler
T_max=epochs, # additional arguments on the scheduler
)

# Train the ensemble
ensemble.fit(
train_loader,
epochs=epochs, # number of training epochs
)

# Evaluate the ensemble
acc = ensemble.evaluate(test_loader) # testing accuracy

Supported Ensemble
------------------

+------------------------------+------------+---------------------------+-----------------------------+
| **Ensemble Name** | **Type** | **Source Code** | **Problem** |
+==============================+============+===========================+=============================+
| Fusion | Mixed | fusion.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Voting [1]_ | Parallel | voting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Neural Forest | Parallel | voting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Bagging [2]_ | Parallel | bagging.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Gradient Boosting [3]_ | Sequential | gradient_boosting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Snapshot Ensemble [4]_ | Sequential | snapshot_ensemble.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Adversarial Training [5]_ | Parallel | adversarial_training.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Fast Geometric Ensemble [6]_ | Sequential | fast_geometric.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+
| Soft Gradient Boosting [7]_ | Parallel | soft_gradient_boosting.py | Classification / Regression |
+------------------------------+------------+---------------------------+-----------------------------+

Dependencies
------------

- scikit-learn>=0.23.0
- torch>=1.4.0
- torchvision>=0.2.2

Reference
---------

.. [1] Zhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. CRC press, 2012.

.. [2] Breiman, Leo. Bagging Predictors. Machine Learning (1996): 123-140.

.. [3] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics (2001): 1189-1232.

.. [4] Huang, Gao, et al. Snapshot Ensembles: Train 1, Get M For Free. ICLR, 2017.

.. [5] Lakshminarayanan, Balaji, et al. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. NIPS, 2017.

.. [6] Garipov, Timur, et al. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS, 2018.

.. [7] Feng, Ji, et al. Soft Gradient Boosting Machine. ArXiv, 2020.

.. _pytorch: https://pytorch.org/

.. _pypi: https://pypi.org/project/torchensemble/

Thanks to all our contributors
------------------------------

|contributors|

.. |contributors| image:: https://contributors-img.web.app/image?repo=TorchEnsemble-Community/Ensemble-Pytorch
.. _contributors: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/graphs/contributors