Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/TrojanXu/yolov5-tensorrt
A tensorrt implementation of yolov5: https://github.com/ultralytics/yolov5
https://github.com/TrojanXu/yolov5-tensorrt
Last synced: about 1 month ago
JSON representation
A tensorrt implementation of yolov5: https://github.com/ultralytics/yolov5
- Host: GitHub
- URL: https://github.com/TrojanXu/yolov5-tensorrt
- Owner: TrojanXu
- License: apache-2.0
- Created: 2020-06-17T01:02:45.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-10-04T07:51:07.000Z (about 4 years ago)
- Last Synced: 2024-08-02T01:19:48.400Z (5 months ago)
- Language: Python
- Size: 13.1 MB
- Stars: 191
- Watchers: 9
- Forks: 46
- Open Issues: 22
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - TrojanXu/yolov5-tensorrt - tensorrt?style=social"/> : A tensorrt implementation of yolov5. (Lighter and Deployment Frameworks)
- awesome-cuda-triton-hpc - TrojanXu/yolov5-tensorrt - tensorrt?style=social"/> : A tensorrt implementation of yolov5. (Applications)
- awesome-cuda-triton-hpc - TrojanXu/yolov5-tensorrt - tensorrt?style=social"/> : A tensorrt implementation of yolov5. (Applications)
README
# yolov5-tensorrt
A tensorrt implementation of yolov5: https://github.com/ultralytics/yolov5# requirement
Please use torch>=1.6.0 + onnx>=1.6.0 + TRT 7.1+ (fix upsample issue) to run the sample code
onnx-simplifier-0.2.16# The code
Add newly implemented upsample to get this working with current combination of onnx and tensorrt.
0. prepare above mentioned environment.
1. git clone && git submodule update --init
2. download weights file (use yolov5/models/export.py)
3. python main.py to run the benchmark
4. Generally, for image of size 640*640, using batchsize=1, the speedup is 4x on V100.# Updates
- 20201004 update to track yolov5 - v3.0 release. download model file from official websites please.# TODO
- [x] NMS support
- [ ] dynamic shape or dynamic batchsize support (**won't implement soon because onnx-simplifier only supports fixed shape**)
- [ ] FP16 numerical issue and performance investigation
- [ ] Benchmark