Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/TuringLang/AdvancedVI.jl

Implementation of variational Bayes inference algorithms
https://github.com/TuringLang/AdvancedVI.jl

Last synced: 29 days ago
JSON representation

Implementation of variational Bayes inference algorithms

Awesome Lists containing this project

README

        

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://turinglang.org/AdvancedVI.jl/stable/)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://turinglang.org/AdvancedVI.jl/dev/)
[![Build Status](https://github.com/TuringLang/AdvancedVI.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/TuringLang/AdvancedVI.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[![Coverage](https://codecov.io/gh/TuringLang/AdvancedVI.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/TuringLang/AdvancedVI.jl)

# AdvancedVI.jl

[AdvancedVI](https://github.com/TuringLang/AdvancedVI.jl) provides implementations of variational inference (VI) algorithms, which is a family of algorithms aiming for scalable approximate Bayesian inference by leveraging optimization.
`AdvancedVI` is part of the [Turing](https://turinglang.org/stable/) probabilistic programming ecosystem.
The purpose of this package is to provide a common accessible interface for various VI algorithms and utilities so that other packages, e.g. `Turing`, only need to write a light wrapper for integration.
For example, integrating `Turing` with `AdvancedVI.ADVI` only involves converting a `Turing.Model` into a [`LogDensityProblem`](https://github.com/tpapp/LogDensityProblems.jl) and extracting a corresponding `Bijectors.bijector`.

## Examples

`AdvancedVI` works with differentiable models specified as a [`LogDensityProblem`](https://github.com/tpapp/LogDensityProblems.jl).
For example, for the normal-log-normal model:

$$
\begin{aligned}
x &\sim \mathrm{LogNormal}\left(\mu_x, \sigma_x^2\right) \\
y &\sim \mathcal{N}\left(\mu_y, \sigma_y^2\right),
\end{aligned}
$$

a `LogDensityProblem` can be implemented as

```julia
using LogDensityProblems
using SimpleUnPack

struct NormalLogNormal{MX,SX,MY,SY}
μ_x::MX
σ_x::SX
μ_y::MY
Σ_y::SY
end

function LogDensityProblems.logdensity(model::NormalLogNormal, θ)
(; μ_x, σ_x, μ_y, Σ_y) = model
return logpdf(LogNormal(μ_x, σ_x), θ[1]) + logpdf(MvNormal(μ_y, Σ_y), θ[2:end])
end

function LogDensityProblems.dimension(model::NormalLogNormal)
return length(model.μ_y) + 1
end

function LogDensityProblems.capabilities(::Type{<:NormalLogNormal})
return LogDensityProblems.LogDensityOrder{0}()
end
```

Since the support of `x` is constrained to be positive and VI is best done in the unconstrained Euclidean space, we need to use a *bijector* to transform `x` into unconstrained Euclidean space. We will use the [`Bijectors.jl`](https://github.com/TuringLang/Bijectors.jl) package for this purpose.
This corresponds to the automatic differentiation variational inference (ADVI) formulation[^KTRGB2017].

```julia
using Bijectors

function Bijectors.bijector(model::NormalLogNormal)
(; μ_x, σ_x, μ_y, Σ_y) = model
return Bijectors.Stacked(
Bijectors.bijector.([LogNormal(μ_x, σ_x), MvNormal(μ_y, Σ_y)]),
[1:1, 2:(1 + length(μ_y))],
)
end
```

A simpler approach is to use `Turing`, where a `Turing.Model` can be automatically be converted into a `LogDensityProblem` and a corresponding `bijector` is automatically generated.

Let us instantiate a random normal-log-normal model.

```julia
using LinearAlgebra

n_dims = 10
μ_x = randn()
σ_x = exp.(randn())
μ_y = randn(n_dims)
σ_y = exp.(randn(n_dims))
model = NormalLogNormal(μ_x, σ_x, μ_y, Diagonal(σ_y .^ 2))
```

We can perform VI with stochastic gradient descent (SGD) using reparameterization gradient estimates of the ELBO[^TL2014][^RMW2014][^KW2014] as follows:

```julia
using Optimisers
using ADTypes, ForwardDiff
using AdvancedVI

# ELBO objective with the reparameterization gradient
n_montecarlo = 10
elbo = AdvancedVI.RepGradELBO(n_montecarlo)

# Mean-field Gaussian variational family
d = LogDensityProblems.dimension(model)
μ = zeros(d)
L = Diagonal(ones(d))
q = AdvancedVI.MeanFieldGaussian(μ, L)

# Match support by applying the `model`'s inverse bijector
b = Bijectors.bijector(model)
binv = inverse(b)
q_transformed = Bijectors.TransformedDistribution(q, binv)

# Run inference
max_iter = 10^3
q_avg, _, stats, _ = AdvancedVI.optimize(
model,
elbo,
q_transformed,
max_iter;
adtype=ADTypes.AutoForwardDiff(),
optimizer=Optimisers.Adam(1e-3),
)

# Evaluate final ELBO with 10^3 Monte Carlo samples
estimate_objective(elbo, q_avg, model; n_samples=10^4)
```

For more examples and details, please refer to the documentation.

[^TL2014]: Titsias, M., & Lázaro-Gredilla, M. (2014, June). Doubly stochastic variational Bayes for non-conjugate inference. In *International Conference on Machine Learning*. PMLR.
[^RMW2014]: Rezende, D. J., Mohamed, S., & Wierstra, D. (2014, June). Stochastic backpropagation and approximate inference in deep generative models. In *International Conference on Machine Learning*. PMLR.
[^KW2014]: Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In *International Conference on Learning Representations*.
[^KTRGB2017]: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. *Journal of machine learning research*.