Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Tveek/mxnet-shufflenet
ShuffleNetV1 &ShuffleNetV2 implementation in mxnet
https://github.com/Tveek/mxnet-shufflenet
mxnet shufflenet-v1 shufflenet-v2
Last synced: 2 months ago
JSON representation
ShuffleNetV1 &ShuffleNetV2 implementation in mxnet
- Host: GitHub
- URL: https://github.com/Tveek/mxnet-shufflenet
- Owner: Tveek
- Created: 2018-10-14T13:36:51.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-11-25T13:44:07.000Z (about 6 years ago)
- Last Synced: 2024-08-01T22:38:50.244Z (5 months ago)
- Topics: mxnet, shufflenet-v1, shufflenet-v2
- Language: C++
- Homepage:
- Size: 14.3 MB
- Stars: 18
- Watchers: 4
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - ShuffleNet v1/v2
README
# ShuffleNet V1&V2
this code is mxnet implementation of ShuffleNetV1 and ShuffleNetv2, For details, please read the original paper:
[shufflenetv1](https://arxiv.org/pdf/1707.01083.pdf)
[shufflenetv2](https://arxiv.org/pdf/1807.11164.pdf)
This code is based on farmingyard's implementation(https://github.com/farmingyard/ShuffleNet)Code is test on MxNet 1.11.0
## Installation
1. Clone this repository, and we'll call the directory that you cloned mxnet-shufflenet as ${SHUFFLENET_ROOT}.
```
git clone https://github.com/Tveek/mxnet-shufflenet.git
```2. Install shuffle channel operator to MXNet:
2.1 Clone MXNet and checkout to [MXNet](https://github.com/apache/incubator-mxnet.git) by
```
git clone --recursive https://github.com/dmlc/mxnet.git
git submodule update
```
2.2 Copy operators in `$(SHUFFLENET_ROOT)/source/shuffle_channel*.xxx` by
```
cp -r $(SHUFFLENET_ROOT)/operator/* $(MXNET_ROOT)/src/operator/contrib/
```
2.3 Compile MXNet
```
cd ${MXNET_ROOT}
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1
```
2.4 Install the MXNet Python binding by
```
cd python
sudo python setup.py install
```3. Python operator function are also in symbol file, so you can use it without above
## Pretrained Models on ImageNet
- RGB mean and std are used(rgb_mean=**[123.68,116.779,103.939]**, rgb_std=**[58.393,57.12,57.375]**)
- The top-1/5 accuracy rates by using single random crop (crop size: 224x224, image size: 256xN)
Network|Top-1|Top-5|model size
:---:|:---:|:---:|---:|
ShuffleNet_V1_1x3| 63.94| 85.27| 7.1MB |
ShuffleNet_V2_1| 65.43| 86.50| 8.7MB |