Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/VIDA-NYU/PipelineVis
Pipeline Profiler is a tool for visualizing machine learning pipelines generated by AutoML tools.
https://github.com/VIDA-NYU/PipelineVis
automl jupyter machine-learning visualization
Last synced: 2 months ago
JSON representation
Pipeline Profiler is a tool for visualizing machine learning pipelines generated by AutoML tools.
- Host: GitHub
- URL: https://github.com/VIDA-NYU/PipelineVis
- Owner: VIDA-NYU
- License: bsd-3-clause
- Created: 2019-10-01T14:57:18.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-09-13T21:10:19.000Z (over 1 year ago)
- Last Synced: 2024-11-07T11:20:57.343Z (2 months ago)
- Topics: automl, jupyter, machine-learning, visualization
- Language: JavaScript
- Homepage:
- Size: 3.66 MB
- Stars: 84
- Watchers: 8
- Forks: 6
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-viz - PipelineProfiler - AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports auto-sklearn and D3M pipeline format. ([↑](#contents) Data Analytics)
README
# PipelineProfiler
AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports Auto-Sklearn, Alpha-AutoML and D3M pipeline format.
[![arxiv badge](https://img.shields.io/badge/arXiv-2005.00160-red)](https://arxiv.org/abs/2005.00160)
![System screen](https://github.com/VIDA-NYU/PipelineVis/raw/master/imgs/system.png)
(Shift click to select multiple pipelines)
**Paper**: [https://arxiv.org/abs/2005.00160](https://arxiv.org/abs/2005.00160)
**Video**: [https://youtu.be/2WSYoaxLLJ8](https://youtu.be/2WSYoaxLLJ8)
**Blog**: [Medium post](https://towardsdatascience.com/exploring-auto-sklearn-models-with-pipelineprofiler-5b2c54136044)
## Demo
Live demo (Google Colab):
- [Heart Stat Log data](https://colab.research.google.com/drive/1k_h4HWUKsd83PmYMEBJ87UP2SSJQYw9A?usp=sharing)
- [auto-sklearn classification](https://colab.research.google.com/drive/1_2FRIkHNFGOiIJt-n_3zuh8vpSMLhwzx?usp=sharing)In Jupyter Notebook:
```Python
import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)
```You can also find multiple examples of PipelineProfiler in the [Alpha-AutoML repository](https://github.com/VIDA-NYU/alpha-automl/tree/devel/examples), an extensible AutoML system for multiple ML tasks.
## Install
### Option 1: install via pip:
~~~~
pip install pipelineprofiler
~~~~### Option 2: Run the docker image:
~~~~
docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler
~~~~Then copy the access token and log in to jupyter in the browser url:
~~~~
localhost:9999
~~~~## Data preprocessing
PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz
You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run
~~~~
python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file
~~~~## Pipeline exploration
```Python
import PipelineProfiler
import json
```In a jupyter notebook, load the output_file
```Python
with open("output_file.json", "r") as f:
pipelines = json.load(f)
```and then plot it using:
```Python
PipelineProfiler.plot_pipeline_matrix(pipelines[:10])
```## Data postprocessing
You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:
```Python
def get_top_k_pipelines_team(pipelines, k):
team_pipelines = defaultdict(list)
for pipeline in pipelines:
source = pipeline['pipeline_source']['name']
team_pipelines[source].append(pipeline)
for team in team_pipelines.keys():
team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
team_pipelines[team] = team_pipelines[team][:k]
new_pipelines = []
for team in team_pipelines.keys():
new_pipelines.extend(team_pipelines[team])
return new_pipelinesdef sort_pipeline_scores(pipelines):
return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)pipelines_problem = {}
for pipeline in pipelines:
problem_id = pipeline['problem']['id']
if problem_id not in pipelines_problem:
pipelines_problem[problem_id] = []
pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))
```