Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/VachelHU/EvoNet
Time-Series Event Prediction with Evolutionary State Graph, WSDM 2021
https://github.com/VachelHU/EvoNet
deep-learning time-series-analysis
Last synced: about 1 month ago
JSON representation
Time-Series Event Prediction with Evolutionary State Graph, WSDM 2021
- Host: GitHub
- URL: https://github.com/VachelHU/EvoNet
- Owner: VachelHU
- Created: 2019-05-10T05:54:45.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-01-04T02:49:38.000Z (almost 4 years ago)
- Last Synced: 2024-06-23T05:59:37.320Z (5 months ago)
- Topics: deep-learning, time-series-analysis
- Language: Python
- Homepage:
- Size: 66.4 MB
- Stars: 87
- Watchers: 7
- Forks: 25
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- StarryDivineSky - VachelHU/EvoNet - Series Event Prediction with Evolutionary State Graph 将时间序列转化为动态图进行表示的方法。该方法成功在阿里云 ·SLS 商业化,作为一项智能巡检服务,可以对大规模时间序列进行异常检测与分析。 (时间序列 / 网络服务_其他)
README
# EvoNet
This project implements the Evolutionary State Graph Neural Network proposed in [1], which is a GNN-based method for time-series event prediction.## Compatibility
Code is compatible with tensorflow version 1.2.0 and Pyhton 3.6.2.
Some Python module dependencies are listed in `requirements.txt`, which can be easily installed with pip:
```
pip install -r requirements.txt
```### Input Format
An example data format is given where data is stored as a list containing 4 dimensionals tensors such as
`[number of samples × segment number × segment length × dimension of observation]`### Configuration
We can use `./model_core/config.py` to set the parameters of model.```
class ModelParam(object):
# basic
model_save_path = "./model"
n_jobs = os.cpu_count()# dataset
data_path = './data'
data_name = 'webtraffic'
his_len = 15
segment_len = 24
segment_dim = 2
n_event = 2
norm = True# state recognition
n_state = 30
covariance_type = 'diag'# model
graph_dim = 256
node_dim = 96
learning_rate = 0.001
batch_size = 1000
id_gpu = '0'
pos_weight = 1.0
```### Main Script
```
python run.py -husage: run.py [-h] [-d {djia30, webtraffic}] [-g GPU]
optional arguments:
-h, --help show this help message and exit
-d {djia30,webtraffic}, --dataset {djia30,webtraffic} select the dataset
-g GPU, --gpu GPU target gpu id
```## Reference
[1] Wenjie, H; Yang, Y; Ziqiang, C; Carl, Y and Xiang, R, 2021, Time-Series Event Prediction with Evolutionary State Graph, In WSDM, 2021
```
@inproceedings{hu2021evonet,
title={Time-Series Event Prediction with Evolutionary State Graph},
author={Wenjie Hu and Yang Yang and Ziqiang Cheng and Carl Yang and Xiang Ren},
booktitle={Proceedings of WSDM},
year={2021}
}
```