Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ValvePython/vdf

📜 Package for working with Valve's text and binary KeyValue format
https://github.com/ValvePython/vdf

hacktoberfest keyvalue parser python serializer steam valve vdf

Last synced: 3 months ago
JSON representation

📜 Package for working with Valve's text and binary KeyValue format

Awesome Lists containing this project

README

        

| |pypi| |license| |coverage| |master_build|
| |sonar_maintainability| |sonar_reliability| |sonar_security|

Pure python module for (de)serialization to and from VDF that works just like ``json``.

Tested and works on ``py2.7``, ``py3.3+``, ``pypy`` and ``pypy3``.

VDF is Valve's KeyValue text file format

https://developer.valvesoftware.com/wiki/KeyValues

| Supported versions: ``kv1``
| Unsupported: ``kv2`` and ``kv3``

Install
-------

You can grab the latest release from https://pypi.org/project/vdf/ or via ``pip``

.. code:: bash

pip install vdf

Install the current dev version from ``github``

.. code:: bash

pip install git+https://github.com/ValvePython/vdf

Problems & solutions
--------------------

- There are known files that contain duplicate keys. This is supported the format and
makes mapping to ``dict`` impossible. For this case the module provides ``vdf.VDFDict``
that can be used as mapper instead of ``dict``. See the example section for details.

- By default de-serialization will return a ``dict``, which doesn't preserve nor guarantee
key order on Python versions prior to 3.6, due to `hash randomization`_. If key order is
important on old Pythons, I suggest using ``collections.OrderedDict``, or ``vdf.VDFDict``.

Example usage
-------------

For text representation

.. code:: python

import vdf

# parsing vdf from file or string
d = vdf.load(open('file.txt'))
d = vdf.loads(vdf_text)
d = vdf.parse(open('file.txt'))
d = vdf.parse(vdf_text)

# dumping dict as vdf to string
vdf_text = vdf.dumps(d)
indented_vdf = vdf.dumps(d, pretty=True)

# dumping dict as vdf to file
vdf.dump(d, open('file2.txt','w'), pretty=True)

For binary representation

.. code:: python

d = vdf.binary_loads(vdf_bytes)
b = vdf.binary_dumps(d)

# alternative format - VBKV

d = vdf.binary_loads(vdf_bytes, alt_format=True)
b = vdf.binary_dumps(d, alt_format=True)

# VBKV with header and CRC checking

d = vdf.vbkv_loads(vbkv_bytes)
b = vdf.vbkv_dumps(d)

Using an alternative mapper

.. code:: python

d = vdf.loads(vdf_string, mapper=collections.OrderedDict)
d = vdf.loads(vdf_string, mapper=vdf.VDFDict)

``VDFDict`` works much like the regular ``dict``, except it handles duplicates and remembers
insert order. Additionally, keys can only be of type ``str``. The most important difference
is that when trying to assigning a key that already exist it will create a duplicate instead
of reassign the value to the existing key.

.. code:: python

>>> d = vdf.VDFDict()
>>> d['key'] = 111
>>> d['key'] = 222
>>> d
VDFDict([('key', 111), ('key', 222)])
>>> d.items()
[('key', 111), ('key', 222)]
>>> d['key']
111
>>> d[(0, 'key')] # get the first duplicate
111
>>> d[(1, 'key')] # get the second duplicate
222
>>> d.get_all_for('key')
[111, 222]

>>> d[(1, 'key')] = 123 # reassign specific duplicate
>>> d.get_all_for('key')
[111, 123]

>>> d['key'] = 333
>>> d.get_all_for('key')
[111, 123, 333]
>>> del d[(1, 'key')]
>>> d.get_all_for('key')
[111, 333]
>>> d[(1, 'key')]
333

>>> print vdf.dumps(d)
"key" "111"
"key" "333"

>>> d.has_duplicates()
True
>>> d.remove_all_for('key')
>>> len(d)
0
>>> d.has_duplicates()
False

.. |pypi| image:: https://img.shields.io/pypi/v/vdf.svg?style=flat&label=latest%20version
:target: https://pypi.org/project/vdf/
:alt: Latest version released on PyPi

.. |license| image:: https://img.shields.io/pypi/l/vdf.svg?style=flat&label=license
:target: https://pypi.org/project/vdf/
:alt: MIT License

.. |coverage| image:: https://img.shields.io/coveralls/ValvePython/vdf/master.svg?style=flat
:target: https://coveralls.io/r/ValvePython/vdf?branch=master
:alt: Test coverage

.. |sonar_maintainability| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=sqale_rating
:target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
:alt: SonarCloud Rating

.. |sonar_reliability| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=reliability_rating
:target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
:alt: SonarCloud Rating

.. |sonar_security| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=security_rating
:target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
:alt: SonarCloud Rating

.. |master_build| image:: https://github.com/ValvePython/vdf/workflows/Tests/badge.svg?branch=master
:target: https://github.com/ValvePython/vdf/actions?query=workflow%3A%22Tests%22+branch%3Amaster
:alt: Build status of master branch

.. _DuplicateOrderedDict: https://github.com/rossengeorgiev/dota2_notebooks/blob/master/DuplicateOrderedDict_for_VDF.ipynb

.. _hash randomization: https://docs.python.org/2/using/cmdline.html#envvar-PYTHONHASHSEED