Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
deep learning for image processing including classification and object-detection etc.
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
bilibili classification deep-learning object-detection pytorch segmentation tensorflow2
Last synced: about 2 months ago
JSON representation
deep learning for image processing including classification and object-detection etc.
- Host: GitHub
- URL: https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
- Owner: WZMIAOMIAO
- License: gpl-3.0
- Created: 2019-11-14T15:02:27.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-07-25T10:17:28.000Z (5 months ago)
- Last Synced: 2024-10-14T08:43:05.280Z (2 months ago)
- Topics: bilibili, classification, deep-learning, object-detection, pytorch, segmentation, tensorflow2
- Language: Python
- Homepage:
- Size: 24.5 MB
- Stars: 22,686
- Watchers: 160
- Forks: 7,947
- Open Issues: 90
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - WZMIAOMIAO/deep-learning-for-image-processing
- awesome-yolo-object-detection - WZMIAOMIAO/deep-learning-for-image-processing - learning-for-image-processing?style=social"/> : deep learning for image processing including classification and object-detection etc. (Summary)
- awesome-yolo-object-detection - WZMIAOMIAO/deep-learning-for-image-processing - learning-for-image-processing?style=social"/> : deep learning for image processing including classification and object-detection etc. (Summary)
README
# 深度学习在图像处理中的应用教程
## 前言
* 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。
* 本教程会以视频的方式进行分享,教学流程如下:
1)介绍网络的结构与创新点
2)使用Pytorch进行网络的搭建与训练
3)使用Tensorflow(内部的keras模块)进行网络的搭建与训练
* 课程中所有PPT都放在`course_ppt`文件夹下,需要的自行下载。## 教程目录,点击跳转相应视频(后期会根据学习内容增加)
* 图像分类
* LeNet(已完成)
* [Pytorch官方demo(Lenet)](https://www.bilibili.com/video/BV187411T7Ye)
* [Tensorflow2官方demo](https://www.bilibili.com/video/BV1n7411T7o6)* AlexNet(已完成)
* [AlexNet网络讲解](https://www.bilibili.com/video/BV1p7411T7Pc)
* [Pytorch搭建AlexNet](https://www.bilibili.com/video/BV1W7411T7qc)
* [Tensorflow2搭建Alexnet](https://www.bilibili.com/video/BV1s7411T7vs)* VggNet(已完成)
* [VggNet网络讲解](https://www.bilibili.com/video/BV1q7411T7Y6)
* [Pytorch搭建VGG网络](https://www.bilibili.com/video/BV1i7411T7ZN)
* [Tensorflow2搭建VGG网络](https://www.bilibili.com/video/BV1q7411T76b)* GoogLeNet(已完成)
* [GoogLeNet网络讲解](https://www.bilibili.com/video/BV1z7411T7ie)
* [Pytorch搭建GoogLeNet网络](https://www.bilibili.com/video/BV1r7411T7M5)
* [Tensorflow2搭建GoogLeNet网络](https://www.bilibili.com/video/BV1a7411T7Ht)* ResNet(已完成)
* [ResNet网络讲解](https://www.bilibili.com/video/BV1T7411T7wa)
* [Pytorch搭建ResNet网络](https://www.bilibili.com/video/BV14E411H7Uw)
* [Tensorflow2搭建ResNet网络](https://www.bilibili.com/video/BV1WE41177Ya)* ResNeXt (已完成)
* [ResNeXt网络讲解](https://www.bilibili.com/video/BV1Ap4y1p71v/)
* [Pytorch搭建ResNeXt网络](https://www.bilibili.com/video/BV1rX4y1N7tE)* MobileNet_V1_V2(已完成)
* [MobileNet_V1_V2网络讲解](https://www.bilibili.com/video/BV1yE411p7L7)
* [Pytorch搭建MobileNetV2网络](https://www.bilibili.com/video/BV1qE411T7qZ)
* [Tensorflow2搭建MobileNetV2网络](https://www.bilibili.com/video/BV1NE411K7tX)* MobileNet_V3(已完成)
* [MobileNet_V3网络讲解](https://www.bilibili.com/video/BV1GK4y1p7uE)
* [Pytorch搭建MobileNetV3网络](https://www.bilibili.com/video/BV1zT4y1P7pd)
* [Tensorflow2搭建MobileNetV3网络](https://www.bilibili.com/video/BV1KA411g7wX)* ShuffleNet_V1_V2 (已完成)
* [ShuffleNet_V1_V2网络讲解](https://www.bilibili.com/video/BV15y4y1Y7SY)
* [使用Pytorch搭建ShuffleNetV2](https://www.bilibili.com/video/BV1dh411r76X)
* [使用Tensorflow2搭建ShuffleNetV2](https://www.bilibili.com/video/BV1kr4y1N7bh)* EfficientNet_V1(已完成)
* [EfficientNet网络讲解](https://www.bilibili.com/video/BV1XK4y1U7PX)
* [使用Pytorch搭建EfficientNet](https://www.bilibili.com/video/BV19z4y1179h/)
* [使用Tensorflow2搭建EfficientNet](https://www.bilibili.com/video/BV1PK4y1S7Jf)* EfficientNet_V2 (已完成)
* [EfficientNetV2网络讲解](https://b23.tv/NDR7Ug)
* [使用Pytorch搭建EfficientNetV2](https://b23.tv/M4hagB)
* [使用Tensorflow搭建EfficientNetV2](https://b23.tv/KUPbdr)
* RepVGG(已完成)
* [RepVGG网络讲解](https://www.bilibili.com/video/BV15f4y1o7QR)* Vision Transformer(已完成)
* [Multi-Head Attention讲解](https://b23.tv/gucpvt)
* [Vision Transformer网络讲解](https://www.bilibili.com/video/BV1Jh411Y7WQ)
* [使用Pytorch搭建Vision Transformer](https://b23.tv/TT4VBM)
* [使用tensorflow2搭建Vision Transformer](https://www.bilibili.com/video/BV1q64y1X7GY)* Swin Transformer(已完成)
* [Swin Transformer网络讲解](https://www.bilibili.com/video/BV1pL4y1v7jC)
* [使用Pytorch搭建Swin Transformer](https://b23.tv/vZnpJf)
* [使用Tensorflow2搭建Swin Transformer](https://b23.tv/UHLMSF)* ConvNeXt(已完成)
* [ConvNeXt网络讲解](https://www.bilibili.com/video/BV1SS4y157fu)
* [使用Pytorch搭建ConvNeXt](https://b23.tv/gzpCv5z)
* [使用Tensorflow2搭建ConvNeXt](https://b23.tv/zikVoch)* MobileViT(已完成)
* [MobileViT网络讲解](https://www.bilibili.com/video/BV1TG41137sb)
* [使用Pytorch搭建MobileViT](https://www.bilibili.com/video/BV1ae411L7Ki)* 目标检测
* Faster-RCNN/FPN(已完成)
* [Faster-RCNN网络讲解](https://www.bilibili.com/video/BV1af4y1m7iL)
* [FPN网络讲解](https://b23.tv/Qhn6xA)
* [Faster-RCNN源码解析(Pytorch)](https://www.bilibili.com/video/BV1of4y1m7nj)* SSD/RetinaNet (已完成)
* [SSD网络讲解](https://www.bilibili.com/video/BV1fT4y1L7Gi)
* [RetinaNet网络讲解](https://b23.tv/ZYCfd2)
* [SSD源码解析(Pytorch)](https://www.bilibili.com/video/BV1vK411H771)* YOLO Series (已完成)
* [YOLO系列网络讲解(V1~V3)](https://www.bilibili.com/video/BV1yi4y1g7ro)
* [YOLOv3 SPP源码解析(Pytorch版)](https://www.bilibili.com/video/BV1t54y1C7ra)
* [YOLOV4网络讲解](https://b23.tv/WLptQ7Q)
* [YOLOV5网络讲解](https://www.bilibili.com/video/BV1T3411p7zR)
* [YOLOX 网络讲解](https://www.bilibili.com/video/BV1JW4y1k76c)
* FCOS(已完成)
* [FCOS网络讲解](https://www.bilibili.com/video/BV1G5411X7jw)* 语义分割
* FCN (已完成)
* [FCN网络讲解](https://www.bilibili.com/video/BV1J3411C7zd)
* [FCN源码解析(Pytorch版)](https://www.bilibili.com/video/BV19q4y1971Q)* DeepLabV3 (已完成)
* [DeepLabV1网络讲解](https://www.bilibili.com/video/BV1SU4y1N7Ao)
* [DeepLabV2网络讲解](https://www.bilibili.com/video/BV1gP4y1G7TC)
* [DeepLabV3网络讲解](https://www.bilibili.com/video/BV1Jb4y1q7j7)
* [DeepLabV3源码解析(Pytorch版)](https://www.bilibili.com/video/BV1TD4y1c7Wx)* LR-ASPP (已完成)
* [LR-ASPP网络讲解](https://www.bilibili.com/video/BV1LS4y1M76E)
* [LR-ASPP源码解析(Pytorch版)](https://www.bilibili.com/video/bv13D4y1F7ML)
* U-Net (已完成)
* [U-Net网络讲解](https://www.bilibili.com/video/BV1Vq4y127fB/)
* [U-Net源码解析(Pytorch版)](https://b23.tv/PCJJmqN)
* U2Net (已完成)
* [U2Net网络讲解](https://www.bilibili.com/video/BV1yB4y1z7mj)
* [U2Net源码解析(Pytorch版)](https://www.bilibili.com/video/BV1Kt4y137iS)* 实例分割
* Mask R-CNN(已完成)
* [Mask R-CNN网络讲解](https://www.bilibili.com/video/BV1ZY411774T)
* [Mask R-CNN源码解析(Pytorch版)](https://www.bilibili.com/video/BV1hY411E7wD)* 关键点检测
* DeepPose(已完成)
* [DeepPose网络讲解](https://www.bilibili.com/video/BV1bm421g7aJ)
* [DeepPose源码解析(Pytorch版)](https://www.bilibili.com/video/BV1bm421g7aJ)* HRNet(已完成)
* [HRNet网络讲解](https://www.bilibili.com/video/BV1bB4y1y7qP)
* [HRNet源码解析(Pytorch版)](https://www.bilibili.com/video/BV1ar4y157JM)**[更多相关视频请进入我的bilibili频道查看](https://space.bilibili.com/18161609/channel/index)**
---
## 所需环境
* Anaconda3(建议使用)
* python3.6/3.7/3.8
* pycharm (IDE)
* pytorch 1.10 (pip package)
* torchvision 0.11.1 (pip package)
* tensorflow 2.4.1 (pip package)欢迎大家关注下我的微信公众号(**阿喆学习小记**),平时会总结些相关学习博文。
如果有什么问题,也可以到我的CSDN中一起讨论。
[https://blog.csdn.net/qq_37541097/article/details/103482003](https://blog.csdn.net/qq_37541097/article/details/103482003)我的bilibili频道:
[https://space.bilibili.com/18161609/channel/index](https://space.bilibili.com/18161609/channel/index)