Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Wavesonics/SymSpellKt

A Kotlin Multiplatform implementation of the SymSpell algorithm.
https://github.com/Wavesonics/SymSpellKt

kotlin kotlin-multiplatform spellcheck spelling spelling-correction

Last synced: 3 months ago
JSON representation

A Kotlin Multiplatform implementation of the SymSpell algorithm.

Awesome Lists containing this project

README

        

# SymSpell Spell Check Kotlin

![Build Status](https://github.com/wavesonics/SymSpellKt/actions/workflows/ci-build.yml/badge.svg?branch=main)
[![Maven Central](https://img.shields.io/maven-central/v/com.darkrockstudios/symspellkt.svg)](https://search.maven.org/artifact/com.darkrockstudios/symspellkt)
![License](https://img.shields.io/badge/license-MIT-blue.svg)

[![Kotlin](https://img.shields.io/badge/kotlin-2.0-blue.svg?logo=kotlin)](http://kotlinlang.org)

[![KMP](https://img.shields.io/badge/supported-platforms:-blue.svg?logo=kotlin)](http://kotlinlang.org)
![badge-jvm] ![badge-android] ![badge-wasm] ![badge-wasmi] ![badge-jsir] ![badge-linux] ![badge-windows] ![badge-mac-x86] ![badge-mac-arm]
![badge-ios] ![badge-ios-sim]

_This is a Kotlin Multiplatform implementation of the [symspell](https://github.com/wolfgarbe/symspell) fuzzy search
algorithm. It has been ported from this [Java implementation](https://github.com/MighTguY/customized-symspell/) of symspell._

## Dependency

`implementation("com.darkrockstudios:symspellkt:2.0.0")`

## Sample

Try out the sample desktop application:

`gradlew sampleCompose:run`

[Try sample here](https://wavesonics.github.io/SymSpellKt/)
[![Sample Compose Screenshot](sample.png)](https://wavesonics.github.io/SymSpellKt/)

## SymSpell v6.6 (Bigrams)

* the optional bigram dictionary in order to use sentence level context information for selecting best spelling
correction.

## SymSpell

* The Symmetric Delete spelling correction algorithm reduces the complexity of edit candidate generation and dictionary
lookup for a given Damerau-Levenshtein distance.
* It is six orders of magnitude faster (than the standard approach with deletes + transposes + replaces + inserts) and
language independent.
* Opposite to other algorithms only deletes are required, no transposes + replaces + inserts. Transposes + replaces +
inserts of the input term are transformed into deletes of the dictionary term.
* The speed comes from the inexpensive delete-only edit candidate generation and the pre-calculation.

[badge-android]: http://img.shields.io/badge/-android-6EDB8D.svg?style=flat
[badge-jvm]: http://img.shields.io/badge/-jvm-DB413D.svg?style=flat
[badge-js]: http://img.shields.io/badge/-js-F8DB5D.svg?style=flat
[badge-js-ir]: https://img.shields.io/badge/support-[IR]-AAC4E0.svg?style=flat
[badge-linux]: http://img.shields.io/badge/-linux-2D3F6C.svg?style=flat
[badge-windows]: http://img.shields.io/badge/-windows-4D76CD.svg?style=flat
[badge-wasm]: https://img.shields.io/badge/-wasm-624FE8.svg?style=flat
[badge-wasmi]: https://img.shields.io/badge/-wasi-626FFF.svg?style=flat
[badge-jsir]: https://img.shields.io/badge/-js(IR)-22D655.svg?style=flat
[badge-apple-silicon]: http://img.shields.io/badge/support-[AppleSilicon]-43BBFF.svg?style=flat
[badge-ios]: http://img.shields.io/badge/-ios-CDCDCD.svg?style=flat
[badge-ios-sim]: http://img.shields.io/badge/-iosSim-AFAFAF.svg?style=flat
[badge-mac-arm]: http://img.shields.io/badge/-macosArm-444444.svg?style=flat
[badge-mac-x86]: http://img.shields.io/badge/-macosX86-111111.svg?style=flat
[badge-watchos]: http://img.shields.io/badge/-watchos-C0C0C0.svg?style=flat
[badge-tvos]: http://img.shields.io/badge/-tvos-808080.svg?style=flat