Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/WisdomShell/codeshell
A series of code large language models developed by PKU-KCL
https://github.com/WisdomShell/codeshell
Last synced: 3 months ago
JSON representation
A series of code large language models developed by PKU-KCL
- Host: GitHub
- URL: https://github.com/WisdomShell/codeshell
- Owner: WisdomShell
- License: other
- Created: 2023-09-22T03:43:58.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-18T10:20:27.000Z (4 months ago)
- Last Synced: 2024-07-18T13:01:57.143Z (4 months ago)
- Language: Python
- Homepage: http://se.pku.edu.cn/kcl
- Size: 1.62 MB
- Stars: 1,593
- Watchers: 26
- Forks: 118
- Open Issues: 45
-
Metadata Files:
- Readme: README.md
- License: License.pdf
Awesome Lists containing this project
- StarryDivineSky - WisdomShell/codeshell - KCL开发的一系列代码大型语言模型。北京大学知识计算实验室联合四川天府银行AI团队研发的多语言代码大模型基座。CodeShell具有70亿参数,在五千亿Tokens进行了训练,上下文窗口长度为8192。在权威的代码评估Benchmark(HumanEval与MBPP)上,CodeShell取得同等规模最好的性能。 (文本生成、文本对话 / 大语言对话模型及数据)
README
🤗 Hugging Face • 🤖 ModelScope • ⭕️ WiseModel • 🌐 PKU-KCL[![license](https://img.shields.io/github/license/modelscope/modelscope.svg)](https://github.com/WisdomShell/codeshell/blob/main/License.pdf)
## Introduction
CodeShell是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)联合四川天府银行AI团队研发的多语言代码大模型基座。CodeShell具有70亿参数,在五千亿Tokens进行了训练,上下文窗口长度为8192。在权威的代码评估Benchmark(HumanEval与MBPP)上,CodeShell取得同等规模最好的性能。与此同时,我们提供了与CodeShell配套的部署方案与IDE插件,请参考代码库[CodeShell](https://github.com/WisdomShell/codeshell)。同时,为了方便中国用户下载,我们在[Modelscope](https://modelscope.cn/organization/WisdomShell)和[Wisemodel](https://www.wisemodel.cn/models/WisdomShell/CodeShell-7B/)中也上传了对应版本,国内用户可以访问。
本次开源的模型如下:
- CodeShell Base:CodelShell底座模型,具有强大的代码基础能力。
- CodeShell Chat:CodelShell对话模型,在代码问答、代码补全等下游任务重性能优异。
- CodeShell Chat 4bit:CodelShell对话模型4bit量化版本,在保证模型性能的前提下内存消耗更小,速度更快。
- CodeShell CPP:CodelShell对话模型CPP版本,支持开发者在没有GPU的个人电脑中使用。注意,CPP版本同样支持量化操作,用户可以在最小内存为8G的个人电脑中运行CodeShell。## Main Characteristics of CodeShell
- **强大的性能**:CodelShell在HumanEval和MBPP上达到了7B代码基座大模型的最优性能
- **完整的体系**:除了代码大模型,同时开源IDE(VS Code与JetBrains)插件,形成开源的全栈技术体系
- **轻量化部署**:支持本地C++部署,提供轻量快速的本地化软件开发助手解决方案
- **全面的评测**:提供支持完整项目上下文、覆盖代码生成、代码缺陷检测与修复、测试用例生成等常见软件开发活动的多任务评测体系(即将开源)
- **高效的训练**:基于高效的数据治理体系,CodeShell在完全冷启动情况下,只训练了五千亿Token即获得了优异的性能## Performance
我们选取了目前最流行的两个代码评测数据集(HumanEval与MBPP)对模型进行评估,与目前最先进的两个7b代码大模型CodeLlama与Starcoder相比,Codeshell 取得了最优的成绩。具体评测结果如下。
| 任务 | CodeShell-7b | CodeLlama-7b | Starcoder-7b |
| ------- | --------- | --------- | --------- |
| humaneval | **34.32** | 29.44 | 27.80 |
| mbpp | **38.65** | 37.60 | 34.16 |
| multiple-js | **33.17** | 31.30 | 27.02 |
| multiple-java | **30.43** | 29.24 | 24.30 |
| multiple-cpp | **28.21** | 27.33 | 23.04 |
| multiple-swift | 24.30 | **25.32** | 15.70 |
| multiple-php | **30.87** | 25.96 | 22.11 |
| multiple-d | 8.85 | **11.60** | 8.08 |
| multiple-jl | 22.08 | **25.28** | 22.96 |
| multiple-lua | 22.39 | **30.50** | 22.92 |
| multiple-r | **20.52** | 18.57 | 14.29 |
| multiple-rkt | **17.20** | 12.55 | 10.43 |
| multiple-rs | 24.55 | **25.90** | 22.82 |## Requirements
- python 3.8 and above
- pytorch 2.0 and above are recommended
- transformers 4.32 and above
- CUDA 11.8 and above are recommended (this is for GPU users, flash-attention users, etc.)## Quickstart
CodeShell系列模型已经上传至 Hugging Face,开发者可以通过Transformers快速调用CodeShell和CodeShell-Chat。
在开始之前,请确保已经正确设置了环境,并安装了必要的代码包,以及满足上一小节的环境要求。你可以通过下列代码快速安装相关依赖。
```
pip install -r requirements.txt
```接下来你可以通过Transformers使用CodeShell。
### Code Generation
开发者可以使用CodeShell快速生成代码,加速开发效率。
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizerdevice = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("WisdomShell/CodeShell-7B")
model = AutoModelForCausalLM.from_pretrained("WisdomShell/CodeShell-7B", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
inputs = tokenizer('def merge_sort():', return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
```- Fill in the Moddle
CodeShell 支持Fill-in-the-Middle模式,从而更好的支持软件开发过程。
```python
input_text = "def print_hello_world():\n \n print('Hello world!')"
inputs = tokenizer(input_text, return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
```- 代码问答
CodeShell同时开源了代码助手模型CodeShell-7B-Chat,开发者可以通过下列代码与模型进行交互。
```python
model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat')history = []
query = '你是谁?'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))query = '用Python写一个HTTP server'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))
```开发者也可以通过VS Code与JetBrains插件与CodeShell-7B-Chat交互,详情请参[VSCode插件仓库](https://github.com/WisdomShell/codeshell-vscode)与[IntelliJ插件仓库](https://github.com/WisdomShell/codeshell-intellij)。
- Model Quantization
CodeShell 支持4 bit/8 bit量化,4 bit量化后,占用显存大小约6G,用户可以在显存较小的GPU上使用CodeShell。
```python
model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4', trust_remote_code=True).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4')
```- CodeShell in c/c++
由于大部分个人电脑没有GPU,CodeShell提供了C/C++版本的推理支持,开发者可以根据本地环境进行编译与使用,详见[CodeShell C/C++本地化版](https://github.com/WisdomShell/llama_cpp_for_codeshell)。
## Demo
我们提供了Web-UI、命令行、API、IDE四种形式的Demo。
### Web UI
开发者通过下列命令启动Web服务,服务启动后,可以通过`https://127.0.0.1:8000`进行访问。
```
python demos/web_demo.py
```### CLI Demo
我们也提供了命令行交互的Demo版本,开发者可以通过下列命令运行。
```
python demos/cli_demo.py
```### API
CodeShell也提供了基于OpenAI API的部署方法。
```
python demos/openai_api.py
```启动后即可通过HTTP请求与CodeShell交互。
```
curl http://127.0.0.1:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "CodeShell-7B-Chat",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}'
```### IDE
CodeShell最后提供了线上IDE,开发者可以通过IDE进行代码补全、代码问答等操作。同时,IDE插件也同时发布,开发者可以自行在本地进行安装使用。插件相关问题欢迎在[VSCode插件仓库](https://github.com/WisdomShell/codeshell-vscode)与[IntelliJ插件仓库](https://github.com/WisdomShell/codeshell-intellij)中讨论。
## Model Details
Code Shell使用GPT-2作为基础架构,采用Grouped-Query Attention、RoPE相对位置编码等技术。
### Hyper-parameter
| Hyper-parameter | Value |
|---|---|
| n_layer | 42 |
| n_embd | 4096 |
| n_inner | 16384 |
| n_head | 32 |
| num_query_groups | 8 |
| seq-length | 8192 |
| vocab_size | 70144 |### Data
CodeShell基于自己爬取的Github数据、Big Code开源的Stack和StarCoder数据集、以及少量高质量的中英文数据进行训练。在原始数据集的基础上,CodeShell采用基于Minihash对数据去重,基于KenLM以及高质量数据筛选模型对数据进行了过滤与筛选,最终得到高质量的预训练数据集。
### Tokenizer
CodeShell基于Starcoder词表进行了优化,去除了使用频率较低的词语,并添加了部分中文词表,显著提升了中文的压缩率,为Chat版本的训练提供了基础。
| Tokenizer | Size | Chinese | English | Code | Total|
|---|---|---|---|---|---|
| Starcoder | 49152 | 1.22 | 3.47 | 3.30 | 2.66 |
| CodeShell | 70020 | 1.50 | 3.47 | 3.30 | 2.95 |## License
社区使用CodeShell模型需要遵循[《CodeShell模型许可协议》](https://github.com/WisdomShell/codeshell/blob/main/License.pdf)及[Apache 2.0许可协议](https://www.apache.org/licenses/LICENSE-2.0)。CodeShell模型允许用于商业用途,但如果您计划将CodeShell模型或其派生产品用于商业用途,需要您确认主体符合以下条件:
1. 关联方的服务或产品的每日平均活跃用户数(DAU)不能超过100万。
2. 关联方不得是软件服务提供商或云服务提供商。
3. 关联方不存在将获得授予的商业许可,在未经许可的前提下将其再授权给其他第三方的可能性。在满足上述条件的前提下,您需要通过向[email protected]发送电子邮件,提交《CodeShell模型许可协议》要求的申请材料。经审核通过后,将授予您一个全球的、非排他的、不可转让的、不可再授权的商业版权许可。
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=WisdomShell/codeshell&type=Date)](https://star-history.com/#WisdomShell/codeshell&Date)