Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/XiaohanYu-GU/MaskCOV
Datasets and Code for MaskCOV (accepted in Pattern Recognition)
https://github.com/XiaohanYu-GU/MaskCOV
categorization ultra-fine-grained visual
Last synced: 2 months ago
JSON representation
Datasets and Code for MaskCOV (accepted in Pattern Recognition)
- Host: GitHub
- URL: https://github.com/XiaohanYu-GU/MaskCOV
- Owner: XiaohanYu-GU
- Created: 2021-05-26T02:45:00.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2021-10-28T07:14:11.000Z (about 3 years ago)
- Last Synced: 2024-08-01T15:25:20.565Z (5 months ago)
- Topics: categorization, ultra-fine-grained, visual
- Language: Python
- Homepage:
- Size: 46.9 KB
- Stars: 7
- Watchers: 2
- Forks: 4
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# MaskCOV
![image](https://user-images.githubusercontent.com/9549469/119601776-36f89a80-be2d-11eb-8535-effb67a1f9e3.png)## Basic information
This work is published in Pattern Recognition. Please cite the following paper should you consider to use this code.
* Xiaohan Yu, Yang Zhao, Yongsheng Gao, Shengwu Xiong (2021). MaskCOV: A Random Mask Covariance Network for Ultra-Fine-Grained Visual Categorization. In Pattern Recognition.@article{yu2021maskcov,
title={MaskCOV: A Random Mask Covariance Network for Ultra-Fine-Grained Visual Categorization},
author={Yu, Xiaohan and Zhao, Yang and Gao, Yongsheng and Xiong, Shengwu},
journal={Pattern Recognition},
pages={108067},
year={2021},
publisher={Elsevier}
}## Source Download
Please find our code in the folder PR_MaskCOV. The ultra-fine-grained image dataset, UFG, used in this paper can be downloaded via "https://github.com/XiaohanYu-GU/Ultra-FGVC".### How to use
install pytorch 1.6.0, python 3.7, cuda 10.1, cudnn7.6.3 and any necessary python package that is required.Use the following order to run the training code in a default setting.
"sh main.sh"
Or revise the hyper-parameters (batch size, learning rate) in config.py if needed and then run "sh main.sh".
### Note
For Cotton80 subset, the batch size is recommended to be 8. For the remaining subsets, the batch size is recommended to be 16.### Acknowledgement
The code is revised based on source code provided by DCL (see "https://github.com/JDAI-CV/DCL"). We sincerely thank their contribution.## Author contact info
*Xiaohan Yu*, *[email protected]*