https://github.com/Yang7879/3D-BoNet
π₯3D-BoNet in Tensorflow (NeurIPS 2019, Spotlight)
https://github.com/Yang7879/3D-BoNet
3d-object-detection 3d-point-clouds 3d-vision computer-vision instance-segmentation
Last synced: 7 months ago
JSON representation
π₯3D-BoNet in Tensorflow (NeurIPS 2019, Spotlight)
- Host: GitHub
- URL: https://github.com/Yang7879/3D-BoNet
- Owner: Yang7879
- License: mit
- Created: 2019-06-02T22:44:03.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-03-02T12:54:20.000Z (over 4 years ago)
- Last Synced: 2024-10-28T08:39:33.149Z (12 months ago)
- Topics: 3d-object-detection, 3d-point-clouds, 3d-vision, computer-vision, instance-segmentation
- Language: Python
- Homepage: https://arxiv.org/abs/1906.01140
- Size: 70.1 MB
- Stars: 393
- Watchers: 11
- Forks: 85
- Open Issues: 54
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni. [arXiv:1906.01140](https://arxiv.org/abs/1906.01140), 2019.
### (1) Setup
ubuntu 16.04 + cuda 8.0python 2.7 or 3.6
tensorflow 1.2 or 1.4
scipy 1.3
h5py 2.9
open3d-python 0.3.0
#### Compile tf_ops
(1) To find tensorflow include path and library paths:import tensorflow as tf
print(tf.sysconfig.get_include())
print(tf.sysconfig.get_lib())(2) To change the path in all the complie files, e.g. tf_ops/sampling/tf_sampling_compile.sh, and then compile:
cd tf_ops/sampling
chmod +x tf_sampling_compile.sh
./tf_sampling_compile.sh### (2) Data
S3DIS: [https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0](https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0)ηΎεΊ¦η: [https://pan.baidu.com/s/1ww_Fs2D9h7_bA2HfNIa2ig](https://pan.baidu.com/s/1ww_Fs2D9h7_bA2HfNIa2ig) ε―η :qpt7
Acknowledgement: we use the same data released by [JSIS3D](https://github.com/pqhieu/jsis3d).
### (3) Train/test
python main_train.pypython main_eval.py
### (4) Quantitative Results on ScanNet

### (5) Qualitative Results on ScanNet
|  |  |
| ---------------------------------------- | -------------------------------------- |
|  |  |#### More results of ScanNet validation split are available at: [More ScanNet Results](https://drive.google.com/file/d/1cV07rP02Yi3Eu6GQxMR2buigNPJEvCq0/view?usp=sharing)
To visualize:
python helper_data_scannet.py### (6) Qualitative Results on S3DIS
|  |  |
| --------------------------------------------- | ----------------------------------------- |
### (7) Training Curves on S3DIS
### (8) Video Demo (Youtube)
### Citation
If you find our work useful in your research, please consider citing:@inproceedings{yang2019learning,
title={Learning object bounding boxes for 3d instance segmentation on point clouds},
author={Yang, Bo and Wang, Jianan and Clark, Ronald and Hu, Qingyong and Wang, Sen and Markham, Andrew and Trigoni, Niki},
booktitle={Advances in Neural Information Processing Systems},
pages={6737--6746},
year={2019}
}
## Related Repos
1. [RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds](https://github.com/QingyongHu/RandLA-Net) 
2. [SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey](https://github.com/QingyongHu/SoTA-Point-Cloud) 
3. [SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds](https://github.com/QingyongHu/SpinNet) 
4. [SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration](https://github.com/QingyongHu/SpinNet) 