Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Yang7879/3D-RecGAN-extended
🔥3D-RecGAN++ in Tensorflow (TPAMI 2018)
https://github.com/Yang7879/3D-RecGAN-extended
3d-computer-vision 3d-reconstruction gans generative-adversarial-network shapenetcore
Last synced: 2 months ago
JSON representation
🔥3D-RecGAN++ in Tensorflow (TPAMI 2018)
- Host: GitHub
- URL: https://github.com/Yang7879/3D-RecGAN-extended
- Owner: Yang7879
- License: mit
- Created: 2018-01-30T16:36:38.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2019-08-17T06:18:14.000Z (over 5 years ago)
- Last Synced: 2024-08-01T03:43:45.727Z (5 months ago)
- Topics: 3d-computer-vision, 3d-reconstruction, gans, generative-adversarial-network, shapenetcore
- Language: Python
- Homepage: https://arxiv.org/abs/1802.00411
- Size: 10.2 MB
- Stars: 133
- Watchers: 12
- Forks: 29
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Dense 3D Object Reconstruction from a Single Depth View
Bo Yang, Stefano Rosa, Andrew Markham, Niki Trigoni, Hongkai Wen. [TPAMI](http://dx.doi.org/10.1109/TPAMI.2018.2868195), 2018.## (1) Architecture
![Arch_Image](https://github.com/Yang7879/3D-RecGAN-extended/blob/master/3D-RecGAN%2B%2B_arch.png)
## (2) Sample Results
![Teaser_Image](https://github.com/Yang7879/3D-RecGAN-extended/blob/master/3D-RecGAN%2B%2B_sample.png)## (3) Data
#### Part 1: {ShapeNetCore.v2: bench, chair, couch, table}, 20G
[https://drive.google.com/open?id=1rmOggF0ivB42KozMX3sQGD1CkZNOGCmM](https://drive.google.com/open?id=1rmOggF0ivB42KozMX3sQGD1CkZNOGCmM)
#### Part 2: {ShapeNetCore.v2: airplane, car, monitor, faucet, guitar, gun}, 9.3G
[https://drive.google.com/open?id=1zLQd68O73ZiwZ8S8qsLwwGYDcC5PiEdG](https://drive.google.com/open?id=1zLQd68O73ZiwZ8S8qsLwwGYDcC5PiEdG)
#### Real Dataset: {Kinect: bench, chair, couch, table}
[https://drive.google.com/open?id=1wTE721q0r66Z6yyN68O1Tz4Bg5-aYnq3](https://drive.google.com/open?id=1wTE721q0r66Z6yyN68O1Tz4Bg5-aYnq3)## (4) Released Model
#### Trained on {bench, chair, couch, table}, 2G
[https://drive.google.com/open?id=1IzwZLgRhzd6GVofzdjBZTblxMPH7NuxP](https://drive.google.com/open?id=1IzwZLgRhzd6GVofzdjBZTblxMPH7NuxP)##### All data and the trained model are also avaliable at Baidu Pan:
[https://pan.baidu.com/s/1FQXo_XQX4flDrE_jwElCCw](https://pan.baidu.com/s/1FQXo_XQX4flDrE_jwElCCw) 提取码: cam7## (5) Requirements
python 2.7.6tensorflow 1.2.0
numpy 1.13.3
scipy 0.19.0
matplotlib 2.0.2
skimage 0.13.0
## (6) Run
#### Training
python main_3D-RecGAN++.py#### Test Demo (Download released model first)
python demo_3D-RecGAN++.py## (7) Citation
If you use the paper, code or data for your research, please cite:
```
@inProceedings{Yang18,
title={Dense 3D Object Reconstruction from a Single Depth View},
author = {Bo Yang
and Stefano Rosa
and Andrew Markham
and Niki Trigoni
and Hongkai Wen},
booktitle={TPAMI},
year={2018}
}
```