Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy

Diffusion model papers, survey, and taxonomy
https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy

diffusion-models stable-diffusion survey text-to-3d text-to-image text-to-video

Last synced: 6 days ago
JSON representation

Diffusion model papers, survey, and taxonomy

Awesome Lists containing this project

README

        

# Diffusion Models: A Comprehensive Survey of Methods and Applications
This repo is constructed for collecting and categorizing papers about diffusion models according to our survey paper——[_**Diffusion Models: A Comprehensive Survey of Methods and Applications**_](https://arxiv.org/abs/2209.00796), which has been accepted by the journal **ACM Computing Surveys**. Considering the fast development of this field, we will continue to update **both [arxiv paper](https://arxiv.org/abs/2209.00796) and this repo**.
# Overview


image

# Catalogue
## [Algorithm Taxonomy](#1)
### [Sampling-Acceleration Enhancement](#1.1)
- [Learning-Free Sampling](#1.1.1)
- [SDE Solver](#1.1.1.1)
- [ODE Solver](#1.1.1.2)
- [Learning-Based Sampling](#1.1.2)
- [Optimized Discretization](#1.1.2.1)
- [Knowledge Distillation](#1.1.2.2)
- [Truncated Diffusion](#1.1.2.3)
### [Likelihood-Maximization Enhancement](#1.2)
- [Noise Schedule Optimization](#1.2.1)
- [Reverse Variance Learning](#1.2.2)
- [Exact Likelihood Computation](#1.2.3)
### [Data with Special Structures](#1.3)
- [Data with Manifold Structures](#1.3.1)
- [Known Manifolds](#1.3.1.1)
- [Learned Manifolds](#1.3.1.2)
- [Data with Invariant Structures](#1.3.2)
- [Discrete Data](#1.3.3)
### [Diffusion with (Multimodal) LLM](#1.4)
- [Simple Combination](#1.4.1)
- [Deep Collaboration](#1.4.2)

## [Application Taxonomy](#2)
* [Computer Vision](#2.1)
- [Image Super Resolution, Inpainting and Translation](#2.1.1)
- [Semantic Segementation](#2.1.2)
- [Video Generation](#2.1.3)
- [3D Generation](#2.1.4)
- [Anomaly Detection](#2.1.5)
- [Object Detection](#2.1.6)
* [Natural Language Processing](#2.2)
* [Temporal Data Modeling](#2.3)
- [Time-Series Imputation](#2.3.1)
- [Time-Seires Forecasting](#2.3.2)
- [Waveform Signal Processing](#2.3.3)
* [Multi-Modal Learning](#2.4)
- [Text-to-Image Generation](#2.4.1)
- [Text-to-3D Generation](#2.4.2)
- [Scene Graph/Layout to Image Generation](#2.4.3)
- [Text-to-Audio Generation](#2.4.4)
- [Text-to-Motion Generation](#2.4.5)
- [Text-to-Video Generation/Editting](#2.4.6)
* [Robust Learning](#2.5)
- [Data Purification](#2.5.1)
- [Generating Synthetic Data for Robust Learning](#2.5.2)
* [Molecular Graph Modeling](#2.6)
* [Material Design](#2.7)
* [Medical Image Reconstruction](#2.8)

## [Connections with Other Generative Models](#3)
* [Variational Autoencoder](#3.1)
* [Generative Adversarial Network](#3.2)
* [Normalizing Flow](#3.3)
* [Autoregressive Models](#3.4)
* [Energy-Based Models](#3.5)

## Algorithm Taxonomy

### 1. Efficient Sampling

#### 1.1 Learning-Free Sampling

##### 1.1.1 SDE Solver

[Score-Based Generative Modeling
through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS)

[Adversarial score matching and improved sampling for image generation](https://openreview.net/forum?id=eLfqMl3z3lq)

[Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse
problems through stochastic contraction](https://openaccess.thecvf.com/content/CVPR2022/html/Chung_Come-Closer-Diffuse-Faster_Accelerating_Conditional_Diffusion_Models_for_Inverse_Problems_Through_Stochastic_CVPR_2022_paper.html)

[Score-Based Generative Modeling with Critically-Damped Langevin Diffusion](https://openreview.net/forum?id=CzceR82CYc)

[ Gotta Go Fast When Generating Data with
Score-Based Models](https://arxiv.org/abs/2105.14080)

[Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364)

[Generative modeling by estimating gradients of the data distribution](https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html)

[Structure-Guided Adversarial Training of Diffusion Models](https://arxiv.org/abs/2402.17563)

##### 1.1.2 ODE Solver
[Denoising Diffusion Implicit Models](https://openreview.net/forum?id=St1giarCHLP)

[Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)

[gDDIM: Generalized denoising diffusion implicit models](https://arxiv.org/abs/2206.05564)

[Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364)

[DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model
Sampling in Around 10 Step](https://arxiv.org/abs/2206.00927)

[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://openreview.net/forum?id=PlKWVd2yBkY)

[Fast Sampling of Diffusion Models with Exponential Integrator](https://arxiv.org/abs/2204.13902)

[Poisson flow generative models](https://openreview.net/pdf?id=voV_TRqcWh)

[Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)

[Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)

[Structure-Guided Adversarial Training of Diffusion Models](https://arxiv.org/abs/2402.17563)

[Consistency Flow Matching: Defining Straight Flows with Velocity Consistency](https://arxiv.org/abs/2407.02398v1)

#### 1.2 Learning-Based Sampling

##### 1.2.1 Optimized Discretization
[Learning to Efficiently Sample from Diffusion Probabilistic Models](https://arxiv.org/abs/2106.03802)

[GENIE: Higher-Order Denoising Diffusion Solvers](https://arxiv.org/abs/2210.05475)

[Learning fast samplers for diffusion models by differentiating through
sample quality](https://openreview.net/forum?id=VFBjuF8HEp)

##### 1.2.2 Knowledge Distillation
[Progressive Distillation for Fast Sampling of Diffusion Models](https://openreview.net/forum?id=TIdIXIpzhoI)

[Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed](https://arxiv.org/abs/2101.02388)

##### 1.2.3 Truncated Diffusion
[Accelerating Diffusion Models via Early Stop of the Diffusion Process](https://arxiv.org/abs/2205.12524)

[Truncated Diffusion Probabilistic Models](https://arxiv.org/abs/2202.09671)

### 2. Improved Likelihood

#### 2.1. Noise Schedule Optimization

[Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)

[ Improved denoising diffusion probabilistic models](https://proceedings.mlr.press/v139/nichol21a.html)

[Variational diffusion models](https://proceedings.neurips.cc/paper/2021/hash/b578f2a52a0229873fefc2a4b06377fa-Abstract.html)

#### 2.2. Reverse Variance Learning
[Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models](https://openreview.net/forum?id=0xiJLKH-ufZ)

[ Improved denoising diffusion probabilistic models](https://proceedings.mlr.press/v139/nichol21a.html)

[Stable Target Field for Reduced Variance Score Estimation in Diffusion Models](https://openreview.net/forum?id=WmIwYTd0YTF)

#### 2.3. Exact Likelihood Computation
[Structure-Guided Adversarial Training of Diffusion Models](https://arxiv.org/abs/2402.17563)

[Score-Based Generative Modeling
through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS)

[Maximum likelihood training of score-based diffusion models](https://proceedings.neurips.cc/paper/2021/hash/0a9fdbb17feb6ccb7ec405cfb85222c4-Abstract.html)

[A variational perspective on diffusion-based generative models and score matching](https://proceedings.neurips.cc/paper/2021/hash/c11abfd29e4d9b4d4b566b01114d8486-Abstract.html)

[Score-Based Generative Modeling
through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS)

[ Maximum Likelihood Training for Score-based Diffusion
ODEs by High Order Denoising Score Matching](https://proceedings.mlr.press/v162/lu22f.html)

[Maximum Likelihood Training of Implicit Nonlinear Diffusion Models](https://openreview.net/forum?id=TQn44YPuOR2)

[Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)

### 3. Data with Special Structures

#### 3.1. Data with Manifold Structures

##### 3.1.1 Known Manifolds

[Riemannian Score-Based Generative
Modeling](https://arxiv.org/abs/2202.02763)

[Riemannian Diffusion Models](https://arxiv.org/abs/2208.07949)

##### 3.1.2 Learned Manifolds
[Score-based generative modeling in latent space](https://proceedings.neurips.cc/paper/2021/hash/5dca4c6b9e244d24a30b4c45601d9720-Abstract.html)

[ Diffusion priors in variational autoencoders](https://orbi.uliege.be/handle/2268/262334)

[ Hierarchical text-conditional image generation with clip latents](https://arxiv.org/abs/2204.06125)

[High-resolution image synthesis with latent diffusion
models](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html)

[Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)

#### 3.2. Data with Invariant Structures
[ GeoDiff: A Geometric Diffusion Model for Molecular
Conformation Generation](https://openreview.net/forum?id=PzcvxEMzvQC)

[Permutation invariant graph generation via
score-based generative modeling](http://proceedings.mlr.press/v108/niu20a)

[Score-based Generative Modeling of Graphs via
the System of Stochastic Differential Equations](https://proceedings.mlr.press/v162/jo22a.html)

[DiGress: Discrete Denoising diffusion for graph generation](https://arxiv.org/abs/2209.14734)

[Learning gradient fields for molecular conformation generation](http://proceedings.mlr.press/v139/shi21b.html)

[Graphgdp: Generative diffusion processes for permutation invariant graph generation](https://arxiv.org/abs/2212.01842)

[SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation](https://arxiv.org/abs/2307.01646)

[Protein-Ligand Interaction Prior for Binding-aware 3D Molecule Diffusion Models](https://openreview.net/forum?id=qH9nrMNTIW)

[Graphusion: Latent Diffusion for Graph Generation](https://ieeexplore.ieee.org/abstract/document/10508504)

#### 3.3 Discrete Data
[Vector quantized diffusion model
for text-to-image synthesis](https://openaccess.thecvf.com/content/CVPR2022/html/Gu_Vector_Quantized_Diffusion_Model_for_Text-to-Image_Synthesis_CVPR_2022_paper.html)

[Structured Denoising Diffusion Models in Discrete
State-Spaces](https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html)

[Vector Quantized Diffusion Model with CodeUnet for Text-to-Sign
Pose Sequences Generation](https://arxiv.org/abs/2208.09141)

[Deep Unsupervised Learning using Non equilibrium
Thermodynamics.](https://openreview.net/forum?id=rkbVIoZdWH)

[A Continuous Time Framework
for Discrete Denoising Models](https://arxiv.org/abs/2205.14987)

### 4. Diffusion with (Multimodal) LLM

#### 4.1. Simple Combination
[LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models](https://arxiv.org/abs/2305.13655)

[Videodirectorgpt: Consistent multi-scene video generation via llm-guided planning](https://arxiv.org/abs/2309.15091)

[RealCompo: Dynamic Equilibrium between Realism and Compositionality Improves Text-to-Image Diffusion Models](https://arxiv.org/abs/2402.12908)

#### 4.2. Deep Collaboration
[Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs](https://arxiv.org/abs/2401.11708)

[VideoTetris: Towards Compositional Text-To-Video Generation](https://arxiv.org/abs/2406.04277)

## Application Taxonomy

### 1. Computer Vision

- Conditional Image Generation (Image Super Resolution, Inpainting, Translation, Manipulation)
- [Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)
- [SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models](https://www.sciencedirect.com/science/article/pii/S0925231222000522)
- [Image Super-Resolution via Iterative Refinement](https://openreview.net/forum?id=y4N8y8ZQ4c1)
- [High-Resolution Image Synthesis with Latent Diffusion Models](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html)
- [Repaint: Inpainting using denoising diffusion probabilistic models.](https://openaccess.thecvf.com/content/CVPR2022/html/Lugmayr_RePaint_Inpainting_Using_Denoising_Diffusion_Probabilistic_Models_CVPR_2022_paper.html)
- [Palette: Image-to-image diffusion models.](https://openreview.net/forum?id=FPGs276lUeq)
- [Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models](http://arxiv.org/abs/2209.06970)
- [Cascaded Diffusion Models for High Fidelity Image Generation.](https://www.jmlr.org/papers/v23/21-0635.html)
- [Conditional image generation with score-based diffusion models](https://arxiv.org/abs/2111.13606)
- [Unsupervised Medical Image Translation with Adversarial Diffusion Models](https://arxiv.org/abs/2207.08208)
- [Score-based diffusion models for accelerated MRI](https://www.sciencedirect.com/science/article/pii/S1361841522001268)
- [Solving Inverse Problems in Medical Imaging with Score-Based Generative Models](https://openreview.net/forum?id=vaRCHVj0uGI)
- [MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion](https://arxiv.org/abs/2203.12621)
- [Sdedit: Guided image synthesis and editing with stochastic differential equations](https://arxiv.org/abs/2108.01073)
- [Soft diffusion: Score matching for general corruptions](https://web7.arxiv.org/abs/2209.05442)
- [Diffusion-Based Scene Graph to Image Generation with Masked Contrastive Pre-Training](https://arxiv.org/abs/2211.11138)
- [ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
- [Image Restoration with Mean-Reverting Stochastic Differential Equations](https://arxiv.org/abs/2301.11699)
- [SpaText: Spatio-Textual Representation for Controllable Image Generation](https://openaccess.thecvf.com/content/CVPR2023/html/Avrahami_SpaText_Spatio-Textual_Representation_for_Controllable_Image_Generation_CVPR_2023_paper.html)
- [Break-A-Scene: Extracting Multiple Concepts from a Single Image](https://arxiv.org/abs/2305.16311)
- [Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)
- [Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)
- [RealCompo: Dynamic Equilibrium between Realism and Compositionality Improves Text-to-Image Diffusion Models](https://arxiv.org/abs/2402.12908)
- [Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs](https://arxiv.org/abs/2401.11708)
- [EditWorld: Simulating World Dynamics for Instruction-Following Image Editing](https://arxiv.org/abs/2405.14785)

- Semantic Segmentation
- [ Label-Efficient Semantic Segmentation with Diffusion Models.](https://openreview.net/forum?id=SlxSY2UZQT)
- [Decoder Denoising Pretraining for Semantic Segmentation.](https://arxiv.org/abs/2205.11423)
- [Diffusion models as plug-and-play priors](https://arxiv.org/abs/2206.09012)

- Video Generation
- [Flexible Diffusion Modeling of Long Videos](https://arxiv.org/abs/2205.11495)
- [Video diffusion models](https://openreview.net/forum?id=BBelR2NdDZ5)
- [Diffusion probabilistic modeling for video generation](https://arxiv.org/abs/2203.09481)
- [MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model.](https://arxiv.org/abs/2208.15001)
- [Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)
- [Stable video diffusion: Scaling latent video diffusion models to large datasets](https://arxiv.org/abs/2311.15127)
- [I2vgen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://arxiv.org/abs/2311.04145)
- [Lumiere: A space-time diffusion model for video generation](https://arxiv.org/abs/2401.12945)
- [VideoTetris: Towards Compositional Text-To-Video Generation](https://arxiv.org/abs/2406.04277)

- 3D Generation
- [3d shape generation and completion through point-voxel diffusion](https://openaccess.thecvf.com/content/ICCV2021/html/Zhou_3D_Shape_Generation_and_Completion_Through_Point-Voxel_Diffusion_ICCV_2021_paper.html)
- [Diffusion probabilistic models for 3d point cloud generation](https://openaccess.thecvf.com/content/CVPR2021/html/Luo_Diffusion_Probabilistic_Models_for_3D_Point_Cloud_Generation_CVPR_2021_paper.html)
- [A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion](https://openreview.net/forum?id=wqD6TfbYkrn)
- [Let us Build Bridges: Understanding and Extending Diffusion Generative Models.](https://arxiv.org/abs/2208.14699)
- [LION: Latent Point Diffusion Models for 3D Shape Generation](https://arxiv.org/abs/2210.06978)
- [Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior](https://arxiv.org/pdf/2303.14184v2.pdf)
- [Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation](https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_Score_Jacobian_Chaining_Lifting_Pretrained_2D_Diffusion_Models_for_3D_CVPR_2023_paper.pdf)
- [RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Generation](https://openaccess.thecvf.com/content/CVPR2023/papers/Anciukevicius_RenderDiffusion_Image_Diffusion_for_3D_Reconstruction_Inpainting_and_Generation_CVPR_2023_paper.pdf)
- [HOLODIFFUSION: Training a 3D Diffusion Model using 2D Images](https://openaccess.thecvf.com/content/CVPR2023/papers/Karnewar_HOLODIFFUSION_Training_a_3D_Diffusion_Model_Using_2D_Images_CVPR_2023_paper.pdf)
- [Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures](https://openaccess.thecvf.com/content/CVPR2023/papers/Metzer_Latent-NeRF_for_Shape-Guided_Generation_of_3D_Shapes_and_Textures_CVPR_2023_paper.pdf)
- [DiffRF: Rendering-Guided 3D Radiance Field Diffusion](https://openaccess.thecvf.com/content/CVPR2023/papers/Muller_DiffRF_Rendering-Guided_3D_Radiance_Field_Diffusion_CVPR_2023_paper.pdf)
- [DiffusioNeRF: Regularizing Neural Radiance Fields with Denoising Diffusion Models](https://openaccess.thecvf.com/content/CVPR2023/papers/Wynn_DiffusioNeRF_Regularizing_Neural_Radiance_Fields_With_Denoising_Diffusion_Models_CVPR_2023_paper.pdf)
- [3D Neural Field Generation using Triplane Diffusion](https://openaccess.thecvf.com/content/CVPR2023/papers/Shue_3D_Neural_Field_Generation_Using_Triplane_Diffusion_CVPR_2023_paper.pdf)

- Anomaly Detection
- [AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise](https://openaccess.thecvf.com/content/CVPR2022W/NTIRE/html/Wyatt_AnoDDPM_Anomaly_Detection_With_Denoising_Diffusion_Probabilistic_Models_Using_Simplex_CVPRW_2022_paper.html)
- [Remote Sensing Change Detection (Segmentation) using Denoising Diffusion Probabilistic Models.](https://ui.adsabs.harvard.edu/abs/2022arXiv220611892G/abstract)

- Object Detection
- [DiffusionDet: Diffusion Model for Object Detection](https://arxiv.org/abs/2211.09788)

### 2. Natural Language Processing
- [Structured denoising diffusion models in discrete state-spaces](https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html)
- [Diffusion-LM Improves Controllable Text Generation.](https://arxiv.org/abs/2205.14217)
- [Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning](https://arxiv.org/abs/2208.04202)
- [DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models](https://arxiv.org/abs/2210.08933)

### 3. Temporal Data Modeling

- Time Series Imputation
- [CSDI: Conditional score-based diffusion models for probabilistic time series imputation](https://proceedings.neurips.cc/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html)
- [Diffusion-based Time Series Imputation and Forecasting with Structured State Space Models](https://arxiv.org/abs/2208.09399)
- [Neural Markov Controlled SDE: Stochastic Optimization for Continuous-Time Data](https://openreview.net/forum?id=7DI6op61AY)

- Time Series Forecasting
- [Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting](http://proceedings.mlr.press/v139/rasul21a.html)
- [Diffusion-based Time Series Imputation and Forecasting with Structured State Space Models](https://arxiv.org/abs/2208.09399)

- Waveform Signal Processing
- [WaveGrad: Estimating Gradients for Waveform Generation. ](https://openreview.net/forum?id=NsMLjcFaO8O)
- [DiffWave: A Versatile Diffusion Model for Audio Synthesis](https://openreview.net/forum?id=a-xFK8Ymz5J)

### 4. Multi-Modal Learning

- Text-to-Image Generation
- [Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)
- [Blended diffusion for text-driven editing of natural images](https://openaccess.thecvf.com/content/CVPR2022/html/Avrahami_Blended_Diffusion_for_Text-Driven_Editing_of_Natural_Images_CVPR_2022_paper.html)
- [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125)
- [Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding](https://arxiv.org/abs/2205.11487)
- [GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models](https://arxiv.org/abs/2112.10741)
- [Vector quantized diffusion model for text-to-image synthesis. ](https://openaccess.thecvf.com/content/CVPR2022/html/Gu_Vector_Quantized_Diffusion_Model_for_Text-to-Image_Synthesis_CVPR_2022_paper.html)
- [Frido: Feature Pyramid Diffusion for Complex Image Synthesis.](https://arxiv.org/abs/2208.13753)
- [DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation](https://arxiv.org/abs/2208.12242)
- [Imagic: Text-Based Real Image Editing with Diffusion Models](https://arxiv.org/abs/2210.09276)
- [UniTune: Text-Driven Image Editing by Fine Tuning an Image Generation Model on a Single Image](https://arxiv.org/abs/2210.09477)
- [DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation](https://openaccess.thecvf.com/content/CVPR2022/html/Kim_DiffusionCLIP_Text-Guided_Diffusion_Models_for_Robust_Image_Manipulation_CVPR_2022_paper.html)
- [One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale](https://ml.cs.tsinghua.edu.cn/diffusion/unidiffuser.pdf)
- [TextDiffuser: Diffusion Models as Text Painters](https://arxiv.org/abs/2305.10855)
- [Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)
- [Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)
- [RealCompo: Dynamic Equilibrium between Realism and Compositionality Improves Text-to-Image Diffusion Models](https://arxiv.org/abs/2402.12908)
- [Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs](https://arxiv.org/abs/2401.11708)
- [EditWorld: Simulating World Dynamics for Instruction-Following Image Editing](https://arxiv.org/abs/2405.14785)

- Text-to-3D Generation
- [Magic3D: High-Resolution Text-to-3D Content Creation](https://arxiv.org/abs/2211.10440)
- [DreamFusion: Text-to-3D using 2D Diffusion](https://arxiv.org/abs/2209.14988)
- [Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior](https://arxiv.org/pdf/2303.14184v2.pdf)
- [Shap·E: Generating Conditional 3D Implicit Functions](https://arxiv.org/pdf/2305.02463.pdf)
- [Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation](https://arxiv.org/pdf/2303.13873.pdf)
- [Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models](https://openaccess.thecvf.com/content/CVPR2023/papers/Xu_Dream3D_Zero-Shot_Text-to-3D_Synthesis_Using_3D_Shape_Prior_and_Text-to-Image_CVPR_2023_paper.pdf)
- [ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation](https://arxiv.org/pdf/2305.16213.pdf)
- [LucidDreamer: Domain-free Generation of 3D Gaussian Splatting Scenes](https://arxiv.org/abs/2311.13384)
- [GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models](https://arxiv.org/abs/2310.08529)
- [IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts](https://arxiv.org/pdf/2310.05375)

- Scene Graph/Layout to Image Generation
- [Diffusion-Based Scene Graph to Image Generation with Masked Contrastive Pre-Training](https://arxiv.org/abs/2211.11138)
- [LayoutDiffusion: Controllable Diffusion Model for Layout-to-image Generation](http://openaccess.thecvf.com/content/CVPR2023/html/Zheng_LayoutDiffusion_Controllable_Diffusion_Model_for_Layout-to-Image_Generation_CVPR_2023_paper.html)
- [LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models](https://arxiv.org/abs/2305.13655)
- [RealCompo: Dynamic Equilibrium between Realism and Compositionality Improves Text-to-Image Diffusion Models](https://arxiv.org/abs/2402.12908)

- Text-to-Audio Generation
- [Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech](https://proceedings.mlr.press/v139/popov21a.html)
- [Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data](https://arxiv.org/abs/2205.15370)
- [Diffsound: Discrete Diffusion Model for Text-to-sound Generation](https://arxiv.org/abs/2207.09983)
- [ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All You Need For Audio Generation](https://ui.adsabs.harvard.edu/abs/2021arXiv210507583W/abstract)
- [Zero-Shot Voice Conditioning for Denoising Diffusion TTS Models](https://arxiv.org/abs/2206.02246)
- [EdiTTS: Score-based Editing for Controllable Text-to-Speech.](https://arxiv.org/abs/2110.02584)
- [ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech.](https://arxiv.org/abs/2207.06389)
- [Text-to-Audio Generation using Instruction-Tuned LLM and Latent Diffusion Model](https://arxiv.org/pdf/2304.13731v1.pdf)



- Text-to-Motion Generation
- [Human motion diffusion model](https://arxiv.org/abs/2209.14916)
- [Motiondiffuse: Text-driven human motion generation with diffusion model](https://arxiv.org/abs/2208.15001)
- [Flame: Free-form language-based motion synthesis & editing](https://arxiv.org/abs/2209.00349)



- Text-to-Video Generation/Editting
- [Make-a-video: Text-to-video generation without text-video data](https://arxiv.org/abs/2209.14792)
- [Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)
- [FateZero: Fusing Attentions for Zero-shot Text-based Video Editing](https://arxiv.org/abs/2303.09535)
- [Imagen video: High definition video generation with diffusion models](https://arxiv.org/abs/2210.02303)
- [Conditional Image-to-Video Generation with Latent Flow Diffusion Models](https://arxiv.org/abs/2303.13744)
- [Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators](https://arxiv.org/abs/2303.13439)
- [Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models](https://arxiv.org/abs/2303.17599)
- [Follow Your Pose: Pose-Guided Text-to-Video Generation using Pose-Free Videos](https://arxiv.org/abs/2304.01186)
- [Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators](https://arxiv.org/abs/2303.13439)
- [ControlVideo: Training-free Controllable Text-to-Video Generation](https://arxiv.org/abs/2305.13077)
- [MotionDirector: Motion Customization of Text-to-Video Diffusion Models](https://arxiv.org/abs/2310.08465)
- [Cross-Modal Contextualized Diffusion Models for Text-Guided Visual Generation and Editing](https://openreview.net/forum?id=nFMS6wF2xq)
- [Stable video diffusion: Scaling latent video diffusion models to large datasets](https://arxiv.org/abs/2311.15127)
- [I2vgen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://arxiv.org/abs/2311.04145)
- [Lumiere: A space-time diffusion model for video generation](https://arxiv.org/abs/2401.12945)
- [Videocrafter1: Open diffusion models for high-quality video generation](https://arxiv.org/abs/2310.19512)
- [VideoTetris: Towards Compositional Text-To-Video Generation](https://arxiv.org/abs/2406.04277)

### 5. Robust Learning

- Data Purification
- [Diffusion Models for Adversarial Purification](https://arxiv.org/abs/2205.07460)
- [Adversarial purification with score-based generative models](http://proceedings.mlr.press/v139/yoon21a.html)
- [Threat Model-Agnostic Adversarial Defense using Diffusion Models](https://arxiv.org/abs/2207.08089)
- [Guided Diffusion Model for Adversarial Purification](https://arxiv.org/abs/2205.14969)
- [Guided Diffusion Model for Adversarial Purification from Random Noise](https://arxiv.org/abs/2206.10875)
- [PointDP: Diffusion-driven Purification against Adversarial Attacks on 3D Point Cloud Recognition.](https://arxiv.org/abs/2208.09801)

- Generating Synthetic Data for Robust Learning
- [Generating high fidelity data from low-density regions using diffusion models](https://arxiv.org/abs/2203.17260)
- [Don’t Play Favorites: Minority Guidance for Diffusion Models](https://arxiv.org/abs/2301.12334)
- [Better diffusion models further improve adversarial training](https://arxiv.org/abs/2302.04638)

### 6. Molecular Graph Modeling
- [Torsional Diffusion for Molecular Conformer Generation.](https://openreview.net/forum?id=D9IxPlXPJJS)
- [Equivariant Diffusion for Molecule Generation in 3D](https://proceedings.mlr.press/v162/hoogeboom22a.html)
- [Protein Structure and Sequence Generation with Equivariant Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2205.15019)
- [GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation](https://openreview.net/forum?id=PzcvxEMzvQC)
- [Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem](https://arxiv.org/abs/2206.04119)
- [Diffusion-based Molecule Generation with Informative Prior Bridge](https://arxiv.org/abs/2209.00865)
- [Learning gradient fields for molecular conformation generation](http://proceedings.mlr.press/v139/shi21b.html)
- [Predicting molecular conformation via dynamic graph score matching. ](https://proceedings.neurips.cc/paper/2021/hash/a45a1d12ee0fb7f1f872ab91da18f899-Abstract.html)
- [DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking](https://arxiv.org/abs/2210.01776)
- [3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction](https://arxiv.org/abs/2303.03543)
- [Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation](https://arxiv.org/abs/2305.12347)
- [Graphusion: Latent Diffusion for Graph Generation](https://ieeexplore.ieee.org/abstract/document/10508504)
- [Binding-Adaptive Diffusion Models for Structure-Based Drug Design](https://arxiv.org/abs/2402.18583)
- [Protein-Ligand Interaction Prior for Binding-aware 3D Molecule Diffusion Models](https://openreview.net/forum?id=qH9nrMNTIW)
- [Interaction-based Retrieval-augmented Diffusion Models for Protein-specific 3D Molecule Generation](https://openreview.net/forum?id=eejhD9FCP3)

### 7. Material Design
- [Crystal Diffusion Variational Autoencoder for Periodic Material Generation](https://arxiv.org/abs/2110.06197)
- [Antigen-specific antibody design and optimization with diffusion-based generative models](https://www.biorxiv.org/content/10.1101/2022.07.10.499510v1)

### 8. Medical Image Reconstruction
- [Solving Inverse Problems in Medical Imaging with Score-Based Generative Models](https://openreview.net/forum?id=vaRCHVj0uGI)
- [MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion](https://arxiv.org/abs/2203.12621)
- [Score-based diffusion models for accelerated MRI](https://arxiv.org/abs/2110.05243)
- [Towards performant and reliable undersampled MR reconstruction via diffusion model sampling](https://arxiv.org/pdf/2203.04292.pdf)
- [Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems through stochastic contraction](https://openaccess.thecvf.com/content/CVPR2022/papers/Chung_Come-Closer-Diffuse-Faster_Accelerating_Conditional_Diffusion_Models_for_Inverse_Problems_Through_Stochastic_CVPR_2022_paper.pdf)

## Connections with Other Generative Models

### 1. Variational Autoencoder
- [Understanding Diffusion Models: A Unified Perspective](https://arxiv.org/abs/2208.11970)
- [A variational perspective on diffusion-based generative models and score matching](https://proceedings.neurips.cc/paper/2021/hash/c11abfd29e4d9b4d4b566b01114d8486-Abstract.html)
- [Score-based generative modeling in latent space](https://proceedings.neurips.cc/paper/2021/hash/5dca4c6b9e244d24a30b4c45601d9720-Abstract.html)
- [Improving Diffusion-Based Image Synthesis with Context Prediction](https://openreview.net/forum?id=wRhLd65bDt)

### 2. Generative Adversarial Network
- [Diffusion-GAN: Training GANs with Diffusion. ](https://arxiv.org/abs/2206.02262)
- [Tackling the generative learning trilemma with denoising diffusion gans](https://openreview.net/forum?id=JprM0p-q0Co)

### 3. Normalizing Flow
- [Diffusion Normalizing Flow](https://proceedings.neurips.cc/paper/2021/hash/876f1f9954de0aa402d91bb988d12cd4-Abstract.html)
- [Interpreting diffusion score matching using normalizing flow](https://openreview.net/forum?id=jxsmOXCDv9l)
- [Maximum Likelihood Training of Implicit Nonlinear Diffusion Models](https://openreview.net/forum?id=TQn44YPuOR2)
- [Consistency Flow Matching: Defining Straight Flows with Velocity Consistency](https://arxiv.org/abs/2407.02398v1)

### 4. Autoregressive Models
- [Autoregressive Diffusion Models. ](https://openreview.net/forum?id=Lm8T39vLDTE)
- [Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting. ](http://proceedings.mlr.press/v139/rasul21a.html)

### 5. Energy-Based Models
- [Learning Energy-Based Models by Diffusion Recovery Likelihood](https://openreview.net/forum?id=v_1Soh8QUNc)
- [Latent Diffusion Energy-Based Model for Interpretable Text Modeling](https://proceedings.mlr.press/v162/yu22h.html)
## Citing
If you find this work useful, please cite our paper:
```
@article{yang2023diffusurvey,
title={Diffusion models: A comprehensive survey of methods and applications},
author={Yang, Ling and Zhang, Zhilong and Song, Yang and Hong, Shenda and Xu, Runsheng and Zhao, Yue and Zhang, Wentao and Cui, Bin and Yang, Ming-Hsuan},
journal={ACM Computing Surveys},
volume={56},
number={4},
pages={1--39},
year={2023},
publisher={ACM New York, NY, USA}
}
```