Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ZYM-PKU/UDiffText
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
https://github.com/ZYM-PKU/UDiffText
Last synced: 2 months ago
JSON representation
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
- Host: GitHub
- URL: https://github.com/ZYM-PKU/UDiffText
- Owner: ZYM-PKU
- License: mit
- Created: 2023-11-30T02:44:35.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-17T17:08:31.000Z (6 months ago)
- Last Synced: 2024-08-01T18:40:43.131Z (5 months ago)
- Language: Python
- Size: 10.5 MB
- Stars: 182
- Watchers: 9
- Forks: 16
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
## UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
#### Our proposed UDiffText is capable of synthesizing accurate and harmonious text in either synthetic or real-word images, thus can be applied to tasks like scene text editing (a), arbitrary text generation (b) and accurate T2I generation (c)
![UDiffText Teaser](demo/teaser.png)
### ๐ฌ News
- **2023.7.16** Our paper is accepted by ECCV2024!๐ฅณ
- **2023.12.11** Version 2.0 update (getting rid of trash codes๐ฎ)
- **2023.12.3** Build Hugging Face demo
- **2023.12.1** Build Github project page
- **2023.11.30** Version 1.0 upload### ๐จ Installation
1. Clone this repo:
```
git clone https://github.com/ZYM-PKU/UDiffText.git
cd UDiffText
```2. Install required Python packages
```
conda create -n udiff python=3.11
conda activate udiff
pip install torch==2.1.1 torchvision==0.16.1 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt
```3. Make the checkpoint directory and build the tree structure
```
mkdir ./checkpointscheckpoints
โโโ AEs // AutoEncoder
โโโ encoders
โโโ LabelEncoder // Character-level encoder
โโโ ViTSTR // STR encoder
โโโ predictors // STR model
โโโ pretrained // Pretrained SD
โโโ ***.ckpt // UDiffText checkpoint
```### ๐ป Training
1. Prepare your data
#### LAION-OCR
- Create a data directory **{your data root}/LAION-OCR** in your disk and put your data in it. Then set the **data_root** field in **./configs/dataset/locr.yaml**.
- For the downloading and preprocessing of Laion-OCR dataset, please refer to [TextDiffuser](https://github.com/microsoft/unilm/tree/master/textdiffuser) and our **./scripts/preprocess/laion_ocr_pre.ipynb**.#### ICDAR13
- Create a data directory **{your data root}/ICDAR13** in your disk and put your data in it. Then set the **data_root** field in **./configs/dataset/icd13.yaml**.
- Build the tree structure as below:
```
ICDAR13
โโโ train // training set
โโโ annos // annotations
โโโ gt_x.txt
โโโ ...
โโโ images // images
โโโ img_x.jpg
โโโ ...
โโโ val // validation set
โโโ annos // annotations
โโโ gt_img_x.txt
โโโ ...
โโโ images // images
โโโ img_x.jpg
โโโ ...
```#### TextSeg
- Create a data directory **{your data root}/TextSeg** in your disk and put your data in it. Then set the **data_root** field in **./configs/dataset/tsg.yaml**.
- Build the tree structure as below:
```
TextSeg
โโโ train // training set
โโโ annotation // annotations
โโโ x_anno.json // annotation json file
โโโ x_mask.png // character-level mask
โโโ ...
โโโ image // images
โโโ x.jpg.jpg
โโโ ...
โโโ val // validation set
โโโ annotation // annotations
โโโ x_anno.json // annotation json file
โโโ x_mask.png // character-level mask
โโโ ...
โโโ image // images
โโโ x.jpg
โโโ ...
```#### SynthText
- Create a data directory **{your data root}/SynthText** in your disk and put your data in it. Then set the **data_root** field in **./configs/dataset/st.yaml**.
- Build the tree structure as below:
```
SynthText
โโโ 1 // part 1
โโโ ant+hill_1_0.jpg // image
โโโ ant+hill_1_1.jpg
โโโ ...
โโโ 2 // part 2
โโโ ...
โโโ gt.mat // annotation file
```2. Train the character-level encoder
Set the parameters in **./configs/pretrain.yaml** and run:
```
python pretrain.py
```3. Train the UDiffText model
Download the [pretrained model](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/blob/main/512-inpainting-ema.ckpt) and put it in **./checkpoints/pretrained/**. You can ignore the "Missing Key" or "Unexcepted Key" warning when loading the checkpoint.
Set the parameters in **./configs/train.yaml**, especially the paths:
```
load_ckpt_path: ./checkpoints/pretrained/512-inpainting-ema.ckpt // Checkpoint of the pretrained SD
model_cfg_path: ./configs/train/textdesign_sd_2.yaml // UDiffText model config
dataset_cfg_path: ./configs/dataset/locr.yaml // Use the Laion-OCR dataset
```and run:
```
python train.py
```### ๐ Evaluation
1. Download our available [checkpoints](https://drive.google.com/drive/folders/1s8IWqqydaJBjukxViGKFj2N33lfoVkGf?usp=sharing) and put them in the corresponding directories in **./checkpoints**.
2. Set the parameters in **./configs/test.yaml**, especially the paths:
```
load_ckpt_path: "./checkpoints/***.ckpt" // UDiffText checkpoint
model_cfg_path: "./configs/test/textdesign_sd_2.yaml" // UDiffText model config
dataset_cfg_path: "./configs/dataset/locr.yaml" // LAION-OCR dataset config
```and run:
```
python test.py
```### ๐ผ๏ธ Demo
In order to run an interactive demo on your own machine, execute the code:
```
python demo.py
```or try our online demo at [hugging face](https://huggingface.co/spaces/ZYMPKU/UDiffText):
![Demo](demo/demo.png)
### ๐ Acknowledgement
- **Dataset**: We sincerely thank the open-source large image-text dataset LAION-OCR with character-level segmentations provided by [TextDiffuser](https://github.com/microsoft/unilm/tree/master/textdiffuser).
- **Code & Model**: We build our project based on the code repo of [Stable Diffusion XL](https://github.com/Stability-AI/generative-models) and leverage the pretrained checkpoint of [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion).
### ๐ชฌ Citation
```
@misc{zhao2023udifftext,
title={UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models},
author={Yiming Zhao and Zhouhui Lian},
year={2023},
eprint={2312.04884},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```