Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ZeroWangZY/federated-learning
Everything about Federated Learning (papers, tutorials, etc.) -- 联邦学习
https://github.com/ZeroWangZY/federated-learning
Last synced: 29 days ago
JSON representation
Everything about Federated Learning (papers, tutorials, etc.) -- 联邦学习
- Host: GitHub
- URL: https://github.com/ZeroWangZY/federated-learning
- Owner: ZeroWangZY
- License: mit
- Created: 2019-04-21T10:00:29.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-04-28T03:48:58.000Z (over 3 years ago)
- Last Synced: 2024-08-03T23:24:41.366Z (4 months ago)
- Homepage:
- Size: 33.2 KB
- Stars: 604
- Watchers: 17
- Forks: 116
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-machine-learning-resources - **[List - learning?style=social) (Table of Contents)
- awesome-Federated-Learning - 8-
README
# 联邦学习 Federated Learning
[![MIT License](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![LICENSE](https://img.shields.io/badge/license-Anti%20996-blue.svg)](https://github.com/996icu/996.ICU/blob/master/LICENSE) [![996.icu](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu)Everything about federated learning. *Your contribution is highly valued!*
关于联邦学习的资料,包括:介绍、综述文章、最新文章、代表工作及其代码、数据集、论文等等。 *欢迎一起贡献!*
---
- 目录
- [1. 教程 Tutorial](#1-教程-Tutorial)
- [2. 相关论文 Related Papers](#2-相关论文-Related-Papers)
- [3. 项目 Project](#3-项目-Project)
- [4. 相关学者 Related Scholars](#4-相关学者-Related-Scholars)---
## 1. 教程 Tutorial
- 文字
- [杨强:联邦学习](https://mp.weixin.qq.com/s/5FTrG5SZey2yeIbuyT3HoQ)
- [Google - Federated Learning: Collaborative Machine Learning without Centralized Training Data](https://ai.googleblog.com/2017/04/federated-learning-collaborative.html)
- [联邦学习的研究及应用](https://mp.weixin.qq.com/s?src=11×tamp=1555896266&ver=1561&signature=ZtLlc7qakNAdw8hV3dxaB30PxtK9hAshYsIxccFf-D4eJrUw6YKQcqD0lD3SDMEn4egQTafUZr429er7SueP6HKLTr*uFKfr6JuHc3OvfdJ-uExiEJStHFynC65htbLp&new=1)
- [杨强:GDPR对AI的挑战和基于联邦迁移学习的对策](https://zhuanlan.zhihu.com/p/42646278)- PPT
- [联邦学习的研究与应用](https://aisp-1251170195.file.myqcloud.com/fedweb/1553845987342.pdf)
- [Federated Learning and Transfer Learning for Privacy, Security and Confidentiality](https://aisp-1251170195.file.myqcloud.com/fedweb/1552916850679.pdf) (AAAI-19)
- [GDPR, Data Shortage and AI](https://aisp-1251170195.file.myqcloud.com/fedweb/1552916659436.pdf) (AAAI-19)- 视频
- [GDPR, Data Shortage and AI](https://aaai.org/Conferences/AAAI-19/invited-speakers/#yang) (AAAI-19 Invited Talk)- 新闻
- 2019/02/09 [谷歌发布全球首个产品级移动端分布式机器学习系统,数千万手机同步训练](https://www.jiemian.com/article/2853096.html)---
## 2. 相关论文 Related Papers
- 综述与介绍 Survey And Introduction
- arXiv 201912 - [Advances and Open Problems in Federated Learning](https://arxiv.org/abs/1912.04977) 58位学者联名综述
- TIST 201902 - [Federated Machine Learning: Concept and Applications](https://dl.acm.org/citation.cfm?id=3298981)
- arXiv 201909 - [Federated Learning in Mobile Edge Networks: A Comprehensive Survey](https://arxiv.org/abs/1909.11875)
- 应用 Application
- 2019 - [Federated Learning for Mobile Keyboard Prediction](https://arxiv.org/abs/1811.03604) - Google将联邦学习用于自家输入法
- 2019 - [Towards Federated Learning at Scale: System Design](https://arxiv.org/abs/1902.01046) - Google千万设备级联邦学习系统设计
- 联邦学习的提出
- 2015 - [Federated Optimization:Distributed Optimization Beyond the Datacenter](https://arxiv.org/abs/1511.03575)
- 2016 - [Practical Secure Aggregation for Federated Learning on User-Held Data](https://arxiv.org/abs/1611.04482)
- 2016 - [Federated Optimization: Distributed Machine Learning for On-Device Intelligence](https://arxiv.org/abs/1610.02527)
- 2017 - [Federated Learning: Strategies for Improving Communication Efficiency](https://arxiv.org/abs/1610.05492)
- 2017 - [Communication-Efficient Learning of Deep Networks from Decentralized Data](https://arxiv.org/abs/1602.05629) 联邦平均算法 the FederatedAveraging algorithm
- 联邦学习安全性
- NIPS 2016 - [Practical Secure Aggregation for Federated Learning on User-Held Data](https://arxiv.org/abs/1611.04482) 增强联邦学习的隐私保护能力
- 2017 - [Differentially Private Federated Learning: A Client Level Perspective](https://arxiv.org/abs/1712.07557) 使用差分隐私避免泄露用户的贡献度
- 2018 - [How to Backdoor Federated Leraning](https://arxiv.org/abs/1807.00459) Model Poisoning攻击
- 2019 - [Can You Really Backdoor Federated Learning](https://arxiv.org/abs/1911.07963) 如何避免联邦学习被后门攻击
- ICML 2019 - [Analyzing Federated Learning through an Adversarial Lens](https://arxiv.org/abs/1811.12470) Model Poisoning攻击
- ICLR 2020 - [DBA: Distributed Backdoor Attacks against Federated Learning](https://openreview.net/forum?id=rkgyS0VFvr) Model Poisoning攻击,在两个最新鲁棒FL框架上验证
- AAAI 2020 - [Robust Federated Training via Collaborative Machine Teaching using Trusted Instances](https://arxiv.org/abs/1905.02941) 鲁棒FL方法,诊断训练集中的Bugs和调整label.
- 联邦学习扩展(FL+)
- NIPS 2017 - [Federated Multi-Task Learning](http://papers.nips.cc/paper/7029-federated-multi-task-learning) 联邦多任务学习
- arXiv 201901 - [Federated Reinforcement Learning](https://arxiv.org/abs/1901.08277) 联邦学习 + 强化学习 (Federated Learning + Reinforcement Learning)
- arXiv 201901 - [SecureBoost: A Lossless Federated Learning Framework](https://arxiv.org/abs/1901.08755) 纵向联邦学习 (Vertical Federated Learning) 使用分布式决策树
- arXiv 201810 - [Secure Federated Transfer Learning](https://arxiv.org/abs/1812.03337) 联邦迁移学习
- ICML 2019 - [Bayesian Nonparametric Federated Learning of Neural Networks](https://arxiv.org/abs/1905.12022) 贝叶斯联邦学习
- ICLR 2020 - [Federated Adversarial Domain Adaptation](https://arxiv.org/abs/1911.02054) 联邦对抗域适应
- ICLR 2021 - [TOWARDS CAUSAL FEDERATED LEARNING FOR ENHANCED ROBUSTNESS AND PRIVACY] (https://arxiv.org/pdf/2104.06557.pdf) (Federated Learning + Causal Learning)
- CyberC 2019 - [Record and Reward Federated Learning Contributions with Blockchain](https://mblocklab.com/RecordandReward.pdf) (Federated Learning + Blockchain)
- 高效联邦学习
- 2018 - [Expanding the Reach of Federated Leraning by Reducing Client Resource Requirements](https://arxiv.org/abs/1812.07210) 提出两个策略来提高通信效率
- 2019 - [Robust and Communication-Efficient Federated Learning from Non-IID Data](https://arxiv.org/abs/1903.02891) 提出压缩框架STC,可以减少训练时间和通信代价---
## 3. 项目 Project
- [FATE - 微众银行](https://github.com/WeBankFinTech/FATE)
- [TensorFlow Federated](https://github.com/tensorflow/federated)
- [Federated-Learning](https://github.com/roxanneluo/Federated-Learning) : An implement of google's paper.---
## 4. 相关学者 Related Scholars
- [杨强 Yang Qiang](https://scholar.google.com/citations?hl=en&user=1LxWZLQAAAAJ)
- [H. Brendan McMahan](https://scholar.google.com/citations?user=iKPWydkAAAAJ&hl=en)
- [jakub konečný](https://scholar.google.com/citations?user=4vq7eXQAAAAJ&hl=en)---
## Contributors
Thanks goes to these wonderful people:
| [
王智勇(Wang Zhiyong)](https://github.com/ZeroWangZY)
| [
刘一璟(Liu Yijing)](https://github.com/zyplanet)
|
| :---: | :---: |## 欢迎参与贡献