Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Zheng-Chong/CatVTON
CatVTON is a simple and efficient virtual try-on diffusion model with 1) Lightweight Network (899.06M parameters totally), 2) Parameter-Efficient Training (49.57M parameters trainable) and 3) Simplified Inference (< 8G VRAM for 1024X768 resolution).
https://github.com/Zheng-Chong/CatVTON
diffusion-models fashion try-on
Last synced: 3 months ago
JSON representation
CatVTON is a simple and efficient virtual try-on diffusion model with 1) Lightweight Network (899.06M parameters totally), 2) Parameter-Efficient Training (49.57M parameters trainable) and 3) Simplified Inference (< 8G VRAM for 1024X768 resolution).
- Host: GitHub
- URL: https://github.com/Zheng-Chong/CatVTON
- Owner: Zheng-Chong
- License: other
- Created: 2024-07-02T14:29:30.000Z (7 months ago)
- Default Branch: edited
- Last Pushed: 2024-10-21T06:48:25.000Z (3 months ago)
- Last Synced: 2024-10-23T00:48:52.787Z (3 months ago)
- Topics: diffusion-models, fashion, try-on
- Language: Python
- Homepage:
- Size: 16.3 MB
- Stars: 856
- Watchers: 11
- Forks: 98
- Open Issues: 26
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
- ai-game-devtools - CatVTON - On with Diffusion Models. |[arXiv](https://arxiv.org/abs/2407.15886) | | Image | (<span id="image">Image</span> / <span id="tool">Tool (AI LLM)</span>)
README
# 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models
**CatVTON** is a simple and efficient virtual try-on diffusion model with ***1) Lightweight Network (899.06M parameters totally)***, ***2) Parameter-Efficient Training (49.57M parameters trainable)*** and ***3) Simplified Inference (< 8G VRAM for 1024X768 resolution)***.
## Updates
- **`2024/10/17`**:[**Mask-free version**](https://huggingface.co/zhengchong/CatVTON-MaskFree)🤗 of CatVTON is release and please try it in our [**Online Demo**](http://120.76.142.206:8888).
- **`2024/10/13`**: We have built a repo [**Awesome-Try-On-Models**](https://github.com/Zheng-Chong/Awesome-Try-On-Models) that focuses on image, video, and 3D-based try-on models published after 2023, aiming to provide insights into the latest technological trends. If you're interested, feel free to contribute or give it a 🌟 star!
- **`2024/08/13`**: We localize DensePose & SCHP to avoid certain environment issues.
- **`2024/08/10`**: Our 🤗 [**HuggingFace Space**](https://huggingface.co/spaces/zhengchong/CatVTON) is available now! Thanks for the grant from [**ZeroGPU**](https://huggingface.co/zero-gpu-explorers)!
- **`2024/08/09`**: [**Evaluation code**](https://github.com/Zheng-Chong/CatVTON?tab=readme-ov-file#3-calculate-metrics) is provided to calculate metrics 📚.
- **`2024/07/27`**: We provide code and workflow for deploying CatVTON on [**ComfyUI**](https://github.com/Zheng-Chong/CatVTON?tab=readme-ov-file#comfyui-workflow) 💥.
- **`2024/07/24`**: Our [**Paper on ArXiv**](http://arxiv.org/abs/2407.15886) is available 🥳!
- **`2024/07/22`**: Our [**App Code**](https://github.com/Zheng-Chong/CatVTON/blob/main/app.py) is released, deploy and enjoy CatVTON on your mechine 🎉!
- **`2024/07/21`**: Our [**Inference Code**](https://github.com/Zheng-Chong/CatVTON/blob/main/inference.py) and [**Weights** 🤗](https://huggingface.co/zhengchong/CatVTON) are released.
- **`2024/07/11`**: Our [**Online Demo**](http://120.76.142.206:8888) is released 😁.## Installation
Create a conda environment & Install requirments
```shell
conda create -n catvton python==3.9.0
conda activate catvton
cd CatVTON-main # or your path to CatVTON project dir
pip install -r requirements.txt
```## Deployment
### ComfyUI Workflow
We have modified the main code to enable easy deployment of CatVTON on [ComfyUI](https://github.com/comfyanonymous/ComfyUI). Due to the incompatibility of the code structure, we have released this part in the [Releases](https://github.com/Zheng-Chong/CatVTON/releases/tag/ComfyUI), which includes the code placed under `custom_nodes` of ComfyUI and our workflow JSON files.To deploy CatVTON to your ComfyUI, follow these steps:
1. Install all the requirements for both CatVTON and ComfyUI, refer to [Installation Guide for CatVTON](https://github.com/Zheng-Chong/CatVTON/blob/main/INSTALL.md) and [Installation Guide for ComfyUI](https://github.com/comfyanonymous/ComfyUI?tab=readme-ov-file#installing).
2. Download [`ComfyUI-CatVTON.zip`](https://github.com/Zheng-Chong/CatVTON/releases/download/ComfyUI/ComfyUI-CatVTON.zip) and unzip it in the `custom_nodes` folder under your ComfyUI project (clone from [ComfyUI](https://github.com/comfyanonymous/ComfyUI)).
3. Run the ComfyUI.
4. Download [`catvton_workflow.json`](https://github.com/Zheng-Chong/CatVTON/releases/download/ComfyUI/catvton_workflow.json) and drag it into you ComfyUI webpage and enjoy 😆!> Problems under Windows OS, please refer to [issue#8](https://github.com/Zheng-Chong/CatVTON/issues/8).
>
When you run the CatVTON workflow for the first time, the weight files will be automatically downloaded, usually taking dozens of minutes.
### Gradio App
To deploy the Gradio App for CatVTON on your machine, run the following command, and checkpoints will be automatically downloaded from HuggingFace.
```PowerShell
CUDA_VISIBLE_DEVICES=0 python app.py \
--output_dir="resource/demo/output" \
--mixed_precision="bf16" \
--allow_tf32
```
When using `bf16` precision, generating results with a resolution of `1024x768` only requires about `8G` VRAM.## Inference
### 1. Data Preparation
Before inference, you need to download the [VITON-HD](https://github.com/shadow2496/VITON-HD) or [DressCode](https://github.com/aimagelab/dress-code) dataset.
Once the datasets are downloaded, the folder structures should look like these:
```
├── VITON-HD
| ├── test_pairs_unpaired.txt
│ ├── test
| | ├── image
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── cloth
│ │ │ ├── [000006_00.jpg | 000008_00.jpg | ...]
│ │ ├── agnostic-mask
│ │ │ ├── [000006_00_mask.png | 000008_00.png | ...]
...
``````
├── DressCode
| ├── test_pairs_paired.txt
| ├── test_pairs_unpaired.txt
│ ├── [dresses | lower_body | upper_body]
| | ├── test_pairs_paired.txt
| | ├── test_pairs_unpaired.txt
│ │ ├── images
│ │ │ ├── [013563_0.jpg | 013563_1.jpg | 013564_0.jpg | 013564_1.jpg | ...]
│ │ ├── agnostic_masks
│ │ │ ├── [013563_0.png| 013564_0.png | ...]
...
```
For the DressCode dataset, we provide script to preprocessed agnostic masks, run the following command:
```PowerShell
CUDA_VISIBLE_DEVICES=0 python preprocess_agnostic_mask.py \
--data_root_path
```### 2. Inference on VTIONHD/DressCode
To run the inference on the DressCode or VITON-HD dataset, run the following command, checkpoints will be automatically downloaded from HuggingFace.```PowerShell
CUDA_VISIBLE_DEVICES=0 python inference.py \
--dataset [dresscode | vitonhd] \
--data_root_path \
--output_dir
--dataloader_num_workers 8 \
--batch_size 8 \
--seed 555 \
--mixed_precision [no | fp16 | bf16] \
--allow_tf32 \
--repaint \
--eval_pair
```
### 3. Calculate MetricsAfter obtaining the inference results, calculate the metrics using the following command:
```PowerShell
CUDA_VISIBLE_DEVICES=0 python eval.py \
--gt_folder \
--pred_folder \
--paired \
--batch_size=16 \
--num_workers=16
```- `--gt_folder` and `--pred_folder` should be folders that contain **only images**.
- To evaluate the results in a paired setting, use `--paired`; for an unpaired setting, simply omit it.
- `--batch_size` and `--num_workers` should be adjusted based on your machine.## Acknowledgement
Our code is modified based on [Diffusers](https://github.com/huggingface/diffusers). We adopt [Stable Diffusion v1.5 inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting) as the base model. We use [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing/tree/master) and [DensePose](https://github.com/facebookresearch/DensePose) to automatically generate masks in our [Gradio](https://github.com/gradio-app/gradio) App and [ComfyUI](https://github.com/comfyanonymous/ComfyUI) workflow. Thanks to all the contributors!## License
All the materials, including code, checkpoints, and demo, are made available under the [Creative Commons BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. You are free to copy, redistribute, remix, transform, and build upon the project for non-commercial purposes, as long as you give appropriate credit and distribute your contributions under the same license.## Citation
```bibtex
@misc{chong2024catvtonconcatenationneedvirtual,
title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models},
author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang},
year={2024},
eprint={2407.15886},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.15886},
}
```