https://github.com/ZhexinLiang/Control-Color
Control Color: Multimodal Diffusion-based Interactive Image Colorization
https://github.com/ZhexinLiang/Control-Color
Last synced: about 2 months ago
JSON representation
Control Color: Multimodal Diffusion-based Interactive Image Colorization
- Host: GitHub
- URL: https://github.com/ZhexinLiang/Control-Color
- Owner: ZhexinLiang
- License: other
- Created: 2023-07-07T02:39:47.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2025-02-23T07:08:25.000Z (3 months ago)
- Last Synced: 2025-02-23T08:19:12.929Z (3 months ago)
- Language: Python
- Homepage: https://zhexinliang.github.io/Control_Color/
- Size: 89.2 MB
- Stars: 139
- Watchers: 21
- Forks: 3
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
Control Color: Multimodal Diffusion-based Interactive Image Colorization
S-Lab, Nanyang Technological University
Control Color (CtrlColor) achieves highly controllable multimodal image colorization based on stable diffusion model.
![]()
Region colorization
Iterative editing
:open_book: For more visual results and applications of CtrlColor, go checkout our project page.
---
## :mega: Updates
- **2024.12.16**: The test codes (gradio demo), colorization model checkpoint, and autoencoder checkpoint are now publicly available.## :desktop_computer: Requirements
- required packages in `CtrlColor_environ.yaml`
```
# git clone this repository
git clone https://github.com/ZhexinLiang/Control-Color.git
cd Control_Color# create new anaconda env and install python dependencies
conda env create -f CtrlColor_environ.yaml
conda activate CtrlColor
```## :running_woman: Inference
### Prepare models:
Please download the checkpoints of both colorization model and vae from [[Google Drive](https://drive.google.com/drive/folders/1lgqstNwrMCzymowRsbGM-4hk0-7L-eOT?usp=sharing)] and put both checkpoints in `./pretrained_models` folder.
### Testing:
You can use the following cmd to run gradio demo:
```
python test.py
```
Then you will get our interactive interface as below:
## :love_you_gesture: Citation
If you find our work useful for your research, please consider citing the paper:
```
@article{liang2024control,
title={Control Color: Multimodal Diffusion-based Interactive Image Colorization},
author={Liang, Zhexin and Li, Zhaochen and Zhou, Shangchen and Li, Chongyi and Loy, Chen Change},
journal={arXiv preprint arXiv:2402.10855},
year={2024}
}
```### Contact
If you have any questions, please feel free to reach out at `[email protected]`.