Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ZhixiuYe/Intra-Bag-and-Inter-Bag-Attentions
Code for NAACL 2019 paper: Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions
https://github.com/ZhixiuYe/Intra-Bag-and-Inter-Bag-Attentions
deeplearning distant-supervision nlp pytorch relation-extraction
Last synced: 3 months ago
JSON representation
Code for NAACL 2019 paper: Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions
- Host: GitHub
- URL: https://github.com/ZhixiuYe/Intra-Bag-and-Inter-Bag-Attentions
- Owner: ZhixiuYe
- Created: 2019-02-26T04:28:52.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2021-07-20T01:55:08.000Z (over 3 years ago)
- Last Synced: 2024-08-02T04:02:27.382Z (6 months ago)
- Topics: deeplearning, distant-supervision, nlp, pytorch, relation-extraction
- Language: Python
- Size: 80.5 MB
- Stars: 113
- Watchers: 8
- Forks: 29
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Intra-Bag and Inter-Bag Attentions
## Dependencies
The code is written in Python 3.6 and pytorch 0.3.0.
## Evaluation Results
### precision/recall curves
Precion/recall curves of CNN+ATT_BL, CNN+ATT_BL+BAG_ATT, CNN+ATT_RA, CNN+ATT RA+BAG ATT
Precion/recall curves of PCNN+ATT_BL, PCNN+ATT_BL+BAG_ATT, PCNN+ATT_RA, PCNN+ATT_RA+BAG_ATT
### AUC Results
Model| no BAG_ATT | BAG_ATT
---- | ---- | ----
CNN+ATT_BL | 0.376 | 0.388
CNN+ATT_RA | 0.398 | 0.407
PCNN+ATT_BL | 0.388 | 0.403
PCNN+ATT_RA | 0.403 | **0.422**## Usage
1. upzip the file `NYT_data/NYT_data.zip`
2. make data folder in the following structure
```
Intra-Bag-and-Inter-Bag-Attentions
|-- figure
|-- CNNmethods.pdf
|-- PCNNmethods.pdf
|-- model
|-- embedding.py
|-- model_bagatt.py
|-- pcnn.py
|-- NYT_data
|-- relation2id.txt
|-- test.txt
|-- train.txt
|-- vec.bin
|-- preprocess
|-- data2pkl.py
|-- extract.cpp
|-- pickledata.py
|-- preprocess.sh
|-- plot.py
|-- README.md
|-- train.py
```3. preprocess NYT data
```
cd preprocess; bash preprocess.sh; cd ..
```4. train model
```
CUDA_VISIBLE_DEVICES=0 python train.py --pretrain --use_RA --sent_encoding pcnn --modelname PCNN_ATTRA
```5. plot the precision/recall curve
```
python plot.py --model_name PCNN_ATTRA_BAGATT
```## Cite
If you use the code, please cite the following paper:
**"[Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions](https://www.aclweb.org/anthology/N19-1288)"**
Zhi-Xiu Ye, Zhen-Hua Ling. _NAACL (2019)_```
@inproceedings{ye-ling-2019-distant,
title = "Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions",
author = "Ye, Zhi-Xiu and
Ling, Zhen-Hua",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/N19-1288",
pages = "2810--2819",
}
```