Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ZijunDeng/pytorch-semantic-segmentation
PyTorch for Semantic Segmentation
https://github.com/ZijunDeng/pytorch-semantic-segmentation
deep-learning fully-convolutional-networks pytorch semantic-segmentation
Last synced: 3 months ago
JSON representation
PyTorch for Semantic Segmentation
- Host: GitHub
- URL: https://github.com/ZijunDeng/pytorch-semantic-segmentation
- Owner: zijundeng
- License: mit
- Created: 2017-06-02T06:45:33.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2019-10-25T09:05:41.000Z (over 5 years ago)
- Last Synced: 2024-08-04T00:12:01.746Z (6 months ago)
- Topics: deep-learning, fully-convolutional-networks, pytorch, semantic-segmentation
- Language: Python
- Homepage:
- Size: 1.55 MB
- Stars: 1,720
- Watchers: 41
- Forks: 395
- Open Issues: 49
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-pytorch-list-CNVersion - pytorch-semantic-segmentation
- Awesome-pytorch-list - pytorch-semantic-segmentation
README
# PyTorch for Semantic Segmentation
This repository contains some models for semantic segmentation and the pipeline of training and testing models,
implemented in PyTorch## Models
1. Vanilla FCN: FCN32, FCN16, FCN8, in the versions of VGG, ResNet and DenseNet respectively
([Fully convolutional networks for semantic segmentation](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf))
2. U-Net ([U-net: Convolutional networks for biomedical image segmentation](https://arxiv.org/pdf/1505.04597))
3. SegNet ([Segnet: A deep convolutional encoder-decoder architecture for image segmentation](https://arxiv.org/pdf/1511.00561))
4. PSPNet ([Pyramid scene parsing network](https://arxiv.org/pdf/1612.01105))
5. GCN ([Large Kernel Matters](https://arxiv.org/pdf/1703.02719))
6. DUC, HDC ([understanding convolution for semantic segmentation](https://arxiv.org/pdf/1702.08502.pdf))## Requirement
1. PyTorch 0.2.0
2. TensorBoard for PyTorch. [Here](https://github.com/lanpa/tensorboard-pytorch) to install
3. Some other libraries (find what you miss when running the code :-P)## Preparation
1. Go to *models* directory and set the path of pretrained models in *config.py*
2. Go to *datasets* directory and do following the README## TODO
1. DeepLab v3
2. RefineNet
3. More dataset (e.g. ADE)