https://github.com/ZitongYu/DeepFAS
🔥Deep Learning for Face Anti-Spoofing
https://github.com/ZitongYu/DeepFAS
Last synced: 25 days ago
JSON representation
🔥Deep Learning for Face Anti-Spoofing
- Host: GitHub
- URL: https://github.com/ZitongYu/DeepFAS
- Owner: ZitongYu
- Created: 2021-06-13T22:45:28.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2023-07-11T08:43:28.000Z (almost 2 years ago)
- Last Synced: 2024-08-01T03:32:36.386Z (9 months ago)
- Homepage:
- Size: 22.6 MB
- Stars: 512
- Watchers: 19
- Forks: 64
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeai - Face Anti-spoofing
- awesome-ai-awesomeness - Face Anti-spoofing
README
# 👏 Survey of Deep Face Anti-spoofing 🔥
This is the official repository of "**[Deep Learning for Face Anti-Spoofing: A Survey](https://arxiv.org/abs/2106.14948)**", a comprehensive survey
of recent progress in deep learning methods for face anti-spoofing (FAS) as well as the datasets and protocols.### Citation
If you find our work useful in your research, please consider citing:@article{yu2022deep,
title={Deep Learning for Face Anti-Spoofing: A Survey},
author={Yu, Zitong and Qin, Yunxiao and Li, Xiaobai and Zhao, Chenxu and Lei, Zhen and Zhao, Guoying},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year={2022}
}## Introduction
We present a comprehensive review of recent deep learning methods for face anti-spoofing (mostly from 2018 to 2022). It covers hybrid (handcrafted+deep), pure deep learning, and generalized learning based methods for monocular RGB face anti-spoofing. It also includes multi-modal learning based methods as well as specialized sensor based FAS. It also presents detailed comparision among publicly available datasets, together with several classical evaluation protocols.🔔 We will update this page frequently~ :tada::tada::tada:
---
## Contents- [Datasets](#data)
- [Using commercial RGB camera](#data_RGB)
- [With multiple modalities or specialized sensors](#data_Multimodal)
- [Deep FAS methods with commercial RGB camera](#methods_RGB)
- [Hybrid (handcrafted + deep)](#hybrid)
- [End-to-end binary cross-entropy supervision](#binary)
- [Pixel-wise auxiliary supervision](#auxiliary)
- [Generative model with pixel-wise supervision](#generative)
- [Domain adaptation](#DA)
- [Domain generalization](#DG)
- [Zero/Few-shot learning](#zero-shot)
- [Anomaly detection](#oneclass)
- [Semi-supervision & Self-supervision](#semiself)
- [Continual learning](#CL)
- [Deep FAS methods with advanced sensor](#methods_advanced)
- [Learning upon specialized sensor](#sensor)
- [Multi-modal learning](#multimodal)
- [Flexible-modal learning](#flexmodal)---

---### 1️⃣ Datasets
#### Datasets recorded with commercial RGB camera
| Dataset | Year | #Live/Spoof | #Sub. | Setup | Attack Types |
| -------- | ----- | ----- | ----- | ----- |------------------------|
| [NUAA](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.607.5449&rep=rep1&type=pdf) | 2010 | 5105/7509(I) | 15 | N/R | Print(flat, wrapped)|
| [YALE Recaptured](https://www.ic.unicamp.br/~rocha/pub/papers/2011-icip-spoofing-detection.pdf) | 2011 | 640/1920(I) | 10 | 50cm-distance from 3 LCD minitors | Print(flat) |
| [CASIA-MFSD](http://www.cbsr.ia.ac.cn/users/jjyan/ZHANG-ICB2012.pdf) | 2012 | 150/450(V) | 50 | 7 scenarios and 3 image quality | Print(flat, wrapped, cut), Replay(tablet)|
| [REPLAY-ATTACK](http://publications.idiap.ch/downloads/papers/2012/Chingovska_IEEEBIOSIG2012_2012.pdf) | 2012 | 200/1000(V) | 50 | Lighting and holding | Print(flat), Replay(tablet, phone) |
| [Kose and Dugelay](https://ieeexplore.ieee.org/document/6595862) | 2013 | 200/198(I) | 20 | N/R | Mask(hard resin) |
| [MSU-MFSD](http://biometrics.cse.msu.edu/Publications/Face/WenHanJain_FaceSpoofDetection_TIFS15.pdf) | 2014 | 70/210(V) | 35 | Indoor scenario; 2 types of cameras | Print(flat), Replay(tablet, phone) |
| [UVAD](https://ieeexplore.ieee.org/document/7017526) | 2015 | 808/16268(V) | 404 | Different lighting, background and places in two sections | Replay(monitor) |
| [REPLAY-Mobile](https://ieeexplore.ieee.org/document/7736936) | 2016 | 390/640(V) | 40 | 5 lighting conditions | Print(flat), Replay(monitor) |
| [HKBU-MARs V2](https://link.springer.com/chapter/10.1007/978-3-319-46478-7_6) | 2016 | 504/504(V) | 12 | 7 cameras from stationary and mobile devices and 6 lighting settings | Mask(hard resin) from Thatsmyface and REAL-f |
| [MSU USSA](https://ieeexplore.ieee.org/document/7487030) | 2016 | 1140/9120(I) | 1140 | Uncontrolled; 2 types of cameras | Print(flat), Replay(laptop, tablet, phone)|
| [SMAD](https://ieeexplore.ieee.org/document/7867821) | 2017 | 65/65(V) | - | Color images from online resources | Mask(silicone) |
| [OULU-NPU](https://ieeexplore.ieee.org/document/7961798) | 2017 | 720/2880(V) | 55 | Lighting & background in 3 sections | Print(flat), Replay(phone) |
| [Rose-Youtu](https://ieeexplore.ieee.org/document/8279564) | 2018 | 500/2850(V) | 20 | 5 front-facing phone camera; 5 different illumination conditions | Print(flat), Replay(monitor, laptop),Mask(paper, crop-paper)|
| [SiW](https://arxiv.org/abs/1803.11097) | 2018 | 1320/3300(V) | 165 | 4 sessions with variations of distance, pose, illumination and expression | Print(flat, wrapped), Replay(phone, tablet, monitor)|
| [WFFD](https://arxiv.org/abs/2005.06514) | 2019 | 2300/2300(I) 140/145(V) | 745 | Collected online; super-realistic; removed low-quality faces | Waxworks(wax)|
| [SiW-M](https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Deep_Tree_Learning_for_Zero-Shot_Face_Anti-Spoofing_CVPR_2019_paper.pdf) | 2019 | 660/968(V) | 493 | Indoor environment with pose, lighting and expression variations | Print(flat), Replay, Mask(hard resin, plastic, silicone, paper, Mannequin), Makeup(cosmetics, impersonation, Obfuscation), Partial(glasses, cut paper)|
| [Swax](https://arxiv.org/abs/1910.09642) | 2020 | Total 1812(I) 110(V) | 55 | Collected online; captured under uncontrolled scenarios | Waxworks(wax)|
| [CelebA-Spoof](https://link.springer.com/chapter/10.1007/978-3-030-58610-2_5) | 2020 | 156384/469153(I) | 10177 | 4 illumination conditions; indoor & outdoor; rich annotations | Print(flat, wrapped), Replay(monitor tablet, phone), Mask(paper)|
| [RECOD-Mtablet](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238058) | 2020 | 450/1800(V) | 45 | Outdoor environment and low-light & dynamic sessions | Print(flat), Replay(monitor) |
| [CASIA-SURF 3DMask](https://ieeexplore.ieee.org/document/9252183) | 2020 | 288/864(V) | 48 | High-quality identity-preserved; 3 decorations and 6 environments | Mask(mannequin with 3D print) |
| [HiFiMask](https://arxiv.org/abs/2104.06148) | 2021 | 13650/40950(V) | 75 | three mask decorations; 7 recording devices; 6 lighting conditions; 6 scenes | Mask(transparent, plaster, resin)|
| [SiW-M v2](https://github.com/CHELSEA234/Multi-domain-learning-FAS) | 2022 | 785/915 (V) | 1093(493/600) | Both indoor and outdoor, diverse age and enthnicity, 7 illumiations | IAPRA-verified 14 spoof attacks (4 coverings, 3 makeups, 3 masks, 2 human models, replay and print)|
| [SuHiFiMask](https://arxiv.org/abs/2301.00975) | 2022 | 10195/10195 (V) | 101 | Long distance using Surveillance cameras, recording in 3 scenes, and 3 lightings, 4 whethers | 2D image, Video replay, 3D Mask with materials Resin, Plaster, Silicone, Paper|
| [WFAS](https://arxiv.org/abs/2304.05753) | 2023 | 529,571/ 853,729 (I) | 469,920 | Internet, unconstrained settings | 17 PAs, Print(newspaper, poster, photo, album, picture book, scan photo, packging, cloth), Display(phone, tablet, TV, computer), Mask, 3D Model(garage kit, doll, adult doll, waxwork)|#### Datasets with multiple modalities or specialized sensors
| Dataset | Year | #Live/Spoof | #Sub. | M&H | Setup | Attack Types |
| -------- | ----- | ----- | ----- | ----- | ----- |------------------------|
| [3DMAD](https://ieeexplore.ieee.org/document/6810829) | 2013 | 170/85(V) | 17 | VIS, Depth | 3 sessions (2 weeks interval) | Mask(paper, hard resin)|
| [GUC-LiFFAD](https://ieeexplore.ieee.org/document/7018027) | 2015 | 1798/3028(V) | 80 | Light field | Distance of 1.5 constrained conditions | Print(Inkjet paper, Laserjet paper), Replay(tablet)|
| [3DFS-DB](https://www.researchgate.net/publication/277905873_Three-dimensional_and_two-and-a-half-dimensional_face_recognition_spoofing_using_three-dimensional_printed_models) | 2016 | 260/260(V) | 26 | VIS, Depth | Head movement with rich angles | Mask(plastic)|
| [BRSU Skin/Face/Spoof](https://ieeexplore.ieee.org/document/7550052) | 2016 | 102/404(I) | 137 | VIS, SWIR | multispectral SWIR with 4 wavebands 935nm, 1060nm, 1300nm and 1550nm | Mask(silicon, plastic, resin, latex)|
| [Msspoof](https://link.springer.com/chapter/10.1007/978-3-319-28501-6_8) | 2016 | 1470/3024(I) | 21 | VIS, NIR | 7 environmental conditions | Black&white Print(flat) |
| [MLFP](https://ieeexplore.ieee.org/document/8014774) | 2017 | 150/1200(V) | 10 | VIS, NIR, Thermal | Indoor and outdoor with fixed and random backgrounds | Mask(latex, paper) |
| [ERPA](https://www.researchgate.net/publication/320177829_What_You_Can't_See_Can_Help_You_-_Extended-Range_Imaging_for_3D-Mask_Presentation_Attack_Detection) | 2017 | Total 86(V) | 5 | VIS, Depth, NIR, Thermal | Subject positioned close (0.3∼0.5m) to the 2 types of cameras | Print(flat), Replay(monitor), Mask(resin, silicone) |
| [LF-SAD ](http://www.ee.cityu.edu.hk/~lmpo/publications/2019_JEI_Face_Liveness.pdf) | 2018 | 328/596(I) | 50 | Light field | Indoor fix background, captured by Lytro ILLUM camera | Print(flat, wrapped), Replay(monitor) |
| [CSMAD](https://ieeexplore.ieee.org/document/8698550) | 2018 | 104/159(V+I) | 14 | VIS, Depth, NIR, Thermal | 4 lighting conditions | Mask(custom silicone) |
| [3DMA](https://ieeexplore.ieee.org/document/8909845) | 2019 | 536/384(V) | 67 | VIS, NIR | 48 masks with different ID; 2 illumination & 4 capturing distances | Mask(plastics) |
| [CASIA-SURF](https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_A_Dataset_and_Benchmark_for_Large-Scale_Multi-Modal_Face_Anti-Spoofing_CVPR_2019_paper.pdf) | 2019 | 3000/18000(V) | 1000 | VIS, Depth, NIR | Background removed; Randomly cut eyes, nose or mouth areas | Print(flat, wrapped, cut) |
| [WMCA](https://ieeexplore.ieee.org/document/8714076) | 2019 | 347/1332(V) | 72 | VIS, Depth, NIR, Thermal | 6 sessions with different backgrounds and illumination; pulse data for bonafide recordings | Print(flat), Replay(tablet), Partial(glasses), Mask(plastic, silicone, and paper, Mannequin) |
| [CeFA](https://openaccess.thecvf.com/content/WACV2021/html/Liu_CASIA-SURF_CeFA_A_Benchmark_for_Multi-Modal_Cross-Ethnicity_Face_Anti-Spoofing_WACV_2021_paper.html) | 2020 | 6300/27900(V) | 1607 | VIS, Depth, NIR | 3 ethnicities; outdoor & indoor; decoration with wig and glasses | Print(flat, wrapped), Replay, Mask(3D print, silica gel) |
| [HQ-WMCA](https://ieeexplore.ieee.org/abstract/document/9146362) | 2020 | 555/2349(V) | 51 | VIS, Depth, NIR, SWIR, Thermal | Indoor; 14 ‘modalities’, including 4 NIR and 7 SWIR wavelengths; masks and mannequins were heated up to reach body temperature | Laser or inkjet Print(flat), Replay(tablet, phone), Mask(plastic, silicon, paper, mannequin), Makeup, Partial(glasses, wigs, tatoo) |
| [PADISI-Face](https://arxiv.org/pdf/2108.12081.pdf) | 2021 | 1105/924(V) | 360 | VIS, Depth, NIR, SWIR, Thermal | Indoor, fixed background, 60-frame sequence of 1984 × 1264 pixel images | print(flat), replay(tablet, phone), mask(plastic, silicon, transparent, Mannequin), makeup/tatoo, partial(glasses,funny eye) |### 2️⃣ Deep FAS methods with commercial RGB camera
- temp
#### Hybrid (handcrafted + deep)
| Method | Year | Backbone | Loss | Input | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [DPCNN](https://ieeexplore.ieee.org/document/7821013) | 2016 | VGG-Face | Trained with SVM | RGB | S|
| [Multi-cues+NN](https://www.sciencedirect.com/science/article/pii/S1047320316300244) | 2016 | MLP | Binary CE loss | RGB+OFM | D|
| [CNN LBP-TOP](https://ieeexplore.ieee.org/document/7984552) | 2017 | 5-layer CNN | Binary CE loss, SVM | RGB | D|
| [DF-MSLBP](https://arxiv.org/abs/1910.03850) | 2018 | Deep forest | Binary CE loss | HSV+YCbCr | S|
| [SPMT+SSD](https://www.sciencedirect.com/science/article/pii/S0031320318303182) | 2018 | VGG16 | Binary CE loss, SVM, bbox regression | RGB, Landmarks | S|
| [CHIF](http://iab-rubric.org/papers/Manjani-DDLSpoofing.pdf) | 2019 | VGG-Face | Trained with SVM | RGB | S|
| [DeepLBP](https://ieeexplore.ieee.org/document/8296251) | 2019 | VGG-Face | Binary CE loss, SVM | RGB, HSV, YCbCr | S|
| [CNN+LBP+WLD](https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5560) | 2019 | CaffeNet | Binary CE loss | RGB | S|
| [Intrinsic](https://onlinelibrary.wiley.com/doi/10.1049/iet-bmt.2019.0155) | 2019 | 1D-CNN | Trained with SVM | Reflection | D|
| [FARCNN](https://ieeexplore.ieee.org/document/8911314) | 2019 | Multi-scale attentional CNN | Regression loss, Crystal loss, Center loss | RGB | S|
| [CNN-LSP](https://ieeexplore.ieee.org/document/8626161) | TIFS 2019 | 1D-CNN | Trained with SVM | RGB | D |
| [DT-Mask](https://ieeexplore.ieee.org/document/8453011) | 2019 | VGG16 | Binary CE loss, Channel&Spatial discriminability | RGB+OF | D |
| [VGG+LBP](https://ieeexplore.ieee.org/document/8955089) | 2019 | VGG16 | Binary CE loss | RGB | S|
| [CNN+OVLBP](http://www.mecs-press.org/ijigsp/ijigsp-v11-n2/IJIGSP-V11-N2-2.pdf) | 2019 | VGG16 | Binary CE loss, NN classifier | RGB | S|
| [HOG-Pert.](https://link.springer.com/chapter/10.1007/978-3-030-20005-3_1) | 2019 | Multi-scale CNN | Binary CE loss | RGB+HOG | S|
| [LBP-Pert.](https://www.sciencedirect.com/science/article/pii/S0262885619304512) | 2020 | Multi-scale CNN | Binary CE loss | RGB+LBP | S|
| [TransRPPG](https://ieeexplore.ieee.org/document/9460762) | SPL 2021 | Vision Transformer | Binary CE loss | rPPG map | D |#### End-to-end binary cross-entropy supervision
| Method | Year | Backbone | Loss | Input | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [CNN1](https://arxiv.org/abs/1408.5601) | 2014 | 8-layer CNN | Trained with SVM | RGB | S|
| [LSTM-CNN](https://ieeexplore.ieee.org/document/7486482) | 2015 | CNN+LSTM | Binary CE loss | RGB | D|
| [SpoofNet](https://arxiv.org/abs/1410.1980) | 2015 | 2-layer CNN | Binary CE loss | RGB | S|
| [HybridCNN](https://ieeexplore.ieee.org/document/8253209) | 2017 | VGG-Face | Trained with SVM | RGB | S|
| [CNN2](https://arxiv.org/abs/1805.04176) | 2017 | VGG11 | Binary CE loss | RGB | S|
| [Ultra-Deep](https://link.springer.com/chapter/10.1007/978-3-319-70096-0_70) | 2017 | ResNet50+LSTM | Binary CE loss | RGB | D|
| [FASNet](https://link.springer.com/chapter/10.1007/978-3-319-59876-5_4) | 2017 | VGG16 | Binary CE loss | RGB | S|
| [CNN3](https://ieeexplore.ieee.org/abstract/document/8166863) | 2018 | Inception, ResNet | Binary CE loss | RGB | S|
| [MILHP](https://www.ijcai.org/proceedings/2018/0113.pdf) | 2018 | ResNet+STN | Multiple Instances CE loss | RGB | D|
| [LSCNN](https://ieeexplore.ieee.org/document/8614337) | 2018 | 9 PatchNets | Binary CE loss | RGB | S|
| [LiveNet](http://www.ee.cityu.edu.hk/~lmpo/publications/2018_ESA_LiveNet.pdf) | 2018 | VGG11 | Binary CE loss | RGB | S|
| [MS-FANS ](https://ieeexplore.ieee.org/document/8546026) | 2018 | AlexNet+LSTM | Binary CE loss | RGB | S|
| [DeepColorFAS](https://ieeexplore.ieee.org/document/8616677) | 2018 | 5-layer CNN | Binary CE loss | RGB, HSV, YCbCr | S|
| [Siamese](https://link.springer.com/chapter/10.1007/978-3-030-31654-9_15) | 2019 | AlexNet | Contrastive loss | RGB | S|
| [FSBuster](https://arxiv.org/abs/1902.02845) | 2019 | ResNet50 | Trained with SVM | RGB | S|
| [FuseDNG](http://www.ee.cityu.edu.hk/~lmpo/publications/2019_VComm_Face_Liveness) | 2019 | 7-layer CNN | Binary CE loss, Reconstruction loss | RGB | S|
| [STASN](https://openaccess.thecvf.com/content_CVPR_2019/papers/Yang_Face_Anti-Spoofing_Model_Matters_so_Does_Data_CVPR_2019_paper.pdf) | CVPR 2019 | ResNet50+LSTM | Binary CE loss | RGB | D|
| [TSCNN](https://ieeexplore.ieee.org/document/8737949) | TIFS 2019 | ResNet18 | Binary CE loss | RGB, MSR | S|
| [FAS-UCM](https://arxiv.org/abs/1907.07270) | 2019 | MobileNetV2, VGG19 | Binary CE loss, Style loss | RGB | S|
| [SLRNN](https://bmvc2019.org/wp-content/uploads/papers/0973-paper.pdf) | 2019 | ResNet50+LSTM | Binary CE loss | RGB | D|
| [GFA-CNN](https://dl.acm.org/doi/abs/10.1145/3402446) | 2019 | VGG16 | Binary CE loss | RGB | S|
| [3DSynthesis](https://ieeexplore.ieee.org/document/8987415) | 2019 | ResNet15 | Binary CE loss | RGB | S|
| [CompactNet](https://www.sciencedirect.com/science/article/pii/S0925231220308237?dgcid=rss_sd_all&utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound) | NC 2020 | VGG19 | Points-to-Center triplet loss | RGB | S|
| [SSR-FCN](https://ieeexplore.ieee.org/document/9218954) | TIFS 2020 | FCN with 6 layers | Binary CE loss | RGB | S|
| [FasTCo](https://arxiv.org/abs/2006.06756) | 2020 | ResNet50 or MobileNetV2 | Multi-class CE loss, Temporal Consistency loss, Class Consistency loss| RGB | D|
| [DRL-FAS](https://ieeexplore.ieee.org/document/9205636) | TIFS 2020 | ResNet18+GRU | Binary CE loss | RGB | S|
| [SfSNet](https://ieeexplore.ieee.org/document/9068268) | 2020 | 6-layer CNN | Binary CE loss | Albedo, Depth, Reflection| S|
| [LivenesSlight](https://arxiv.org/pdf/1801.01949.pdf) | 2020 | 6-layer CNN | Binary CE loss | RGB | S|
| [MotionEnhancement](https://ieeexplore.ieee.org/document/9203944) | 2020 | VGGface+LSTM | Binary CE loss | RGB | D|
| [CFSA-FAS](https://ieeexplore.ieee.org/document/9175520) | 2020 | ResNet18 | Binary CE loss | RGB | S|
| [MC-FBC](https://arxiv.org/abs/2005.06514) | 2020 | VGG16, ResNet50 | Binary CE loss | RGB | S|
| [SimpleNet](https://arxiv.org/abs/2006.16028) | 2020 | Multi-stream 5-layer CNN | Binary CE loss | RGB, OF, RP | D|
| [PatchCNN](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238058) | 2020 | SqueezeNet v1.1 | Binary CE loss, Triplet loss | RGB | S|
| [FreqSpatialTempNet](https://arxiv.org/abs/2002.03723) | 2020 | ResNet18 | Binary CE loss | RGB, HSV, Spectral | D|
| [ViTranZFAS](https://arxiv.org/abs/2011.08019) |IJCB 2021 | ViT | Binary CE loss | RGB | S|
| [CIFL](https://ieeexplore.ieee.org/document/9336714) | TIFS 2021 | ResNet18 | Binary focal loss, camear type loss | RGB | S|
| [XFace-PAD](https://arxiv.org/abs/2111.04862) | FG 2021 | ResNet50, ViT | Binary CE loss, word-wise CE loss, a sentence discriminative loss, and a sentence semantic loss | RGB | S|
| [PCGN](https://dl.acm.org/doi/pdf/10.1145/3474085.3475305) | MM 2021 | ResNet101+GCN | CE Loss for node and edge | RGB whole image | S|
| [TOD](https://arxiv.org/abs/2111.11046) | 2021 | ResNet18, Graph Attention Network | CE Loss | RGB | S|
| [MTSS](https://www.bmvc2021-virtualconference.com/assets/papers/0113.pdf) | BMVC 2021 | ViT+Multi-Level Attention Module | CE Loss | RGB | S|
| [PatchNet](https://arxiv.org/abs/2203.14325) | CVPR 2022 | ResNet18 | Asymmetric AM-Softmax Loss, Self-Supervised Similarity Loss | RGB patches | S|
| [ViTransPAD](https://arxiv.org/pdf/2203.01562.pdf) | ICIP 2022 | EfficientNet + VideoViT | CE Loss | RGB | D|
| [FGDNet](https://ieeexplore.ieee.org/document/9946402) | TMM 2022 | Convolutional Transformer | 5-class CE Loss | RGB | S|#### Pixel-wise auxiliary supervision
| Method | Year | Supervision | Backbone | Input | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [Depth&Patch](https://ieeexplore.ieee.org/document/8272713/) | IJCB 2017 | Depth | PatchNet, DepthNet | YCbCr, HSV | S|
| [Auxiliary](http://cvlab.cse.msu.edu/pdfs/Liu_Jourabloo_Liu_CVPR2018.pdf) | CVPR 2018 | Depth, rPPG spectrum | DepthNet | RGB, HSV | D|
| [BASN](https://openaccess.thecvf.com/content_ICCVW_2019/papers/DFW/Kim_BASN_Enriching_Feature_Representation_Using_Bipartite_Auxiliary_Supervisions_for_Face_ICCVW_2019_paper.pdf) | ICCVW 2019 | Depth, Reflection | DepthNet, Enrichment | RGB, HSV | S|
| [DTN](https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Deep_Tree_Learning_for_Zero-Shot_Face_Anti-Spoofing_CVPR_2019_paper.pdf) | CVPR 2019 | BinaryMask | Tree Network | RGB, HSV | S|
| [PixBiS](http://publications.idiap.ch/downloads/papers/2019/George_ICB2019.pdf) | ICB 2019 | BinaryMask | DenseNet161 | RGB | S|
| [A-PixBiS](http://www.dicta2020.org/wp-content/uploads/2020/09/53_CameraReady.pdf) | 2020 | BinaryMask | DenseNet161 | RGB | S|
| [Auto-FAS](https://ieeexplore.ieee.org/document/9053587) | ICASSP 2020 | BinaryMask | NAS | RGB | S|
| [MRCNN](https://www.sciencedirect.com/science/article/pii/S0167865520300015) | 2020 | BinaryMask | Shallow CNN | RGB | S|
| [FCN-LSA](https://ieeexplore.ieee.org/document/9056475) | 2020 | BinaryMask | DepthNet | RGB | S|
| [CDCN](https://openaccess.thecvf.com/content_CVPR_2020/papers/Yu_Searching_Central_Difference_Convolutional_Networks_for_Face_Anti-Spoofing_CVPR_2020_paper.pdf) | CVPR 2020 | Depth | DepthNet | RGB | S|
| [FAS-SGTD](https://arxiv.org/abs/2003.08061) | CVPR 2020 | Depth | DepthNet, STPM | RGB | D|
| [TS-FEN](https://ieeexplore.ieee.org/document/9054115) | 2020 | Depth | ResNet34, FCN | RGB, YCbCr, HSV | S|
| [SAPLC](https://ieeexplore.ieee.org/document/9056824) | 2020 | TernaryMap | DepthNet | RGB, HSV | S|
| [BCN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520545.pdf) | ECCV 2020 | BinaryMask, Depth, Reflection | DepthNet | RGB | S|
| [Disentangled](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123640630.pdf) | ECCV 2020 | Depth, TextureMap | DepthNet | RGB | S|
| [AENet](https://link.springer.com/chapter/10.1007/978-3-030-58610-2_5) | ECCV 2020 | Depth, Reflection | ResNet18 | RGB | S|
| [3DPC-Net](https://ieeexplore.ieee.org/document/9304873) | IJCB 2020 | 3D Point Cloud | ResNet18 | RGB | S|
| [PS](https://ieeexplore.ieee.org/document/9375488) | TBIOM 2020 | BinaryMask or Depth | ResNet50 or CDCN | RGB | S|
| [NAS-FAS](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9252183) | PAMI 2020 | BinaryMask or Depth | NAS | RGB | D|
| [DAM](https://ieeexplore.ieee.org/abstract/document/9382387) | 2021 | Depth | VGG16, TSM | RGB | D|
| [Bi-FPNFAS](https://www.mdpi.com/1424-8220/21/8/2799) | 2021 | Fourier spectra | EfficientNetB0, FPN | RGB | S|
| [DC-CDN](https://arxiv.org/abs/2105.01290) | IJCAI 2021 | Depth | CDCN | RGB | S|
| [DCN](https://arxiv.org/pdf/2107.10628.pdf) | IJCB 2021 | Reflection | DepthNet | RGB | S|
| [LMFD-PAD](https://arxiv.org/pdf/2109.07950.pdf) | 2021 | BinaryMask | Dual-ResNet50 | RGB + frequency map | S|
| [MPFLN](https://openaccess.thecvf.com/content/ICCV2021W/HTCV/papers/Wang_Multi-Perspective_Features_Learning_for_Face_Anti-Spoofing_ICCVW_2021_paper.pdf) | ICCVW 2021 | Depth, BinaryMask | CDCN, 3D-CDCN | RGB | S, D|
| [DSDG+DUM](https://arxiv.org/abs/2112.00568) | TIFS 2021 | Depth | CDCN | RGB | S|
| [SAFPAD](https://ieeexplore.ieee.org/document/9650907) | TIFS 2021 | Depth | DepthNet | RGB & Patch | S|
| [EPCR](https://arxiv.org/pdf/2111.12320.pdf) | 2021 | BinaryMask | CDCN | RGB | S|
| [AISL](https://www.sciencedirect.com/science/article/pii/S0167865521004384) | PRL 2021 | Depth | DepthNet | RGB | S|
| [MEGC](https://arxiv.org/abs/2202.10187) | ICASSP 2022 | Depth, Relection, Moire, Boundary | DepthNet+Feature Enrichment | RGB, HSV | S|
| [EulerNet](http://ksiresearch.org/seke/seke22paper/paper076.pdf) | 2022 | Face Location Map | EulerNet with Temporal Attention, Residual Pyramid | RGB | D|
| [TTN](https://ieeexplore.ieee.org/document/9730902) | TIFS 2022 | Depth | ViT with Pyramid Temporal Aggregation, Temporal Difference Attentions | RGB | D|
| [TransFAS](https://ieeexplore.ieee.org/document/9817442) | TBIOM 2022 | Depth | ViT with Cross-Layer Attentions | RGB | S|
| [DepthSeg](https://ieeexplore.ieee.org/document/9892826) | IJCNN 2022 | Depth | PSPNet, DeepLabv3+ | RGB | S|#### Generative model with pixel-wise supervision
| Method | Year | Supervision | Backbone | Input | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [De-Spoof](https://arxiv.org/abs/1807.09968) | ECCV 2018 | Depth, BinaryMask, FourierMap | DSNet, DepthNet | RGB, HSV | S|
| [Reconstruction](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8997504) | 2019 | RGB Input (live), ZeroMap (spoof) | U-Net | RGB | S|
| [LGSC](https://arxiv.org/abs/2005.03922) | 2020 | ZeroMap (live) | U-Net, ResNet18 | RGB | S|
| [TAE](http://publications.idiap.ch/downloads/papers/2020/Mohammadi_InfoVAE_ICASSP_2020.pdf) | ICASSP 2020 | Binary CE loss, Reconstruction loss | Info-VAE, DenseNet161 | RGB | S|
| [STDN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123630392.pdf) | ECCV 2020 | BinaryMask, RGB Input (live) | U-Net, PatchGAN | RGB | S|
| [GOGen](https://openaccess.thecvf.com/content_CVPR_2020/papers/Stehouwer_Noise_Modeling_Synthesis_and_Classification_for_Generic_Object_Anti-Spoofing_CVPR_2020_paper.pdf) | CVPR 2020 | RGB input | DepthNet | RGB+one-hot vector | S|
| [PhySTD](https://arxiv.org/abs/2012.05185) | PAMI 2022 | Depth, RGB Input (live) | U-Net, PatchGAN | Frequency Trace | S|
| [MT-FAS](https://ieeexplore.ieee.org/document/9462562) | PAMI 2021 | ZeroMap (live), LearnableMap (Spoof) | DepthNet | RGB | S|
| [IF-OM](https://arxiv.org/pdf/2109.04100.pdf) | 2021 | RGB input, mixed input features | MobileNetV2 + UNet | RGB, mixed RGB, folded RGB | S|
| [Dual-Stage Disentanglement](https://arxiv.org/abs/2110.09157) | WACV 2021 | ZeroMap (live), RGB Input for reconstruction | U-Net, ResNet18 | RGB | S|#### Domain adaptation
| Method | Year | Backbone | Loss | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- |
| [OR-DA](https://ieeexplore.ieee.org/document/8279564) | TIFS 2018 | AlexNet | Binary CE loss, MMD loss | S|
| [DTCNN](https://arxiv.org/abs/1901.05633) | 2019 | AlexNet | Binary CE loss, MMD loss | S|
| [Adversarial](https://ieeexplore.ieee.org/document/8987254) | ICB 2019 | ResNet18 | Triplet loss, Adversarial loss | S|
| [ML-MMD](https://ieeexplore.ieee.org/abstract/document/8795006) | ICMEW 2019 | Multi-scale FCN | CE loss, MMD loss | S|and unlabeled sets
| [OCA-FAS](https://www.sciencedirect.com/science/article/pii/S0925231220313540) | NC 2020 | DepthNet | Binary CE loss, Pixel-wise binary loss | S|
| [DR-UDA](https://ieeexplore.ieee.org/abstract/document/9116802) | TIFS 2020 | ResNet18 | Center&Triplet loss, Adversarial loss, Disentangled loss | S|
| [DGP](https://ieeexplore.ieee.org/document/9053685) |ICASSP 2020 | DenseNet161 | Feature divergence measure, BinaryMask loss | S|
| [Distillation](https://signalprocessingsociety.org/publications-resources/ieee-journal-selected-topics-signal-processing/face-anti-spoofing-deep-neural) | J-STSP 2020 | AlexNet | Binary CE loss, MMD loss , Paired Similarity | S|
| [SASA](https://arxiv.org/pdf/2106.14162.pdf) | 2021 | ResNet18 | CE Loss, Adversarial loss, Less-forgetting constraints, Contrastive semantic alignment | S|
| [GDA](https://arxiv.org/abs/2207.10015) |ECCV 2022 | DepthNet | CE Loss, Depth loss, Inter-domain Neural Statistic Consistency, phase consistency, Perceptual loss | S|
| [CDFTN](https://arxiv.org/abs/2212.03651) |AAAI 2023 | ResNet18 | CE Loss, Reconstruction loss, triplet loss | S|#### Domain generalization
| Method | Year | Backbone | Loss | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- |
| [MADDG](https://openaccess.thecvf.com/content_CVPR_2019/papers/Shao_Multi-Adversarial_Discriminative_Deep_Domain_Generalization_for_Face_Presentation_Attack_Detection_CVPR_2019_paper.pdf) | CVPR 2019 | DepthNet | Binary CE & Depth loss, Multi-adversarial loss, Dual-force Triplet loss | S|
| [PAD-GAN](https://arxiv.org/abs/2004.01959) | CVPR 2020 | ResNet18 | Binary CE & Depth loss, Multi-adversarial loss, Dual-force Triplet loss | S|
| [DASN](https://ieeexplore.ieee.org/document/9423958) | 2020 | ResNet18 | Binary CE & Spoof-irrelevant factor loss | S|
| [SSDG](https://openaccess.thecvf.com/content_CVPR_2020/papers/Jia_Single-Side_Domain_Generalization_for_Face_Anti-Spoofing_CVPR_2020_paper.pdf) | CVPR 2020 | ResNet18 | Binary CE loss, Single-Side adversarial loss, Asymmetric Triplet loss | S|
| [RF-Meta](https://arxiv.org/abs/1911.10771) | AAAI 2020 | DepthNet | Binary CE loss, Depth loss | S|
| [CCDD](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w48/Saha_Domain_Agnostic_Feature_Learning_for_Image_and_Video_Based_Face_CVPRW_2020_paper.pdf) | CVPRW 2020 | ResNet50+LSTM | Binary CE loss, Class-conditional loss | D|
| [SDA](https://arxiv.org/abs/2102.12129) | AAAI 2021 | DepthNet | Binary CE & Depth loss, Reconstruction loss, Orthogonality regularization | S|
| [D2AM](https://ojs.aaai.org/index.php/AAAI/article/view/16199) |AAAI 2021 | DepthNet | Binary CE loss, Depth loss, MMD loss | S|
| [DRDG](https://arxiv.org/pdf/2106.16128.pdf) | IJCAI 2021 | DepthNet | Binary CE loss, Depth loss, Domain loss | S|
| [PDL-FAS](https://arxiv.org/pdf/2107.06552.pdf) | 2021 | DepthNet | Binary CE loss, Depth loss | S|
| [ANRL](https://arxiv.org/abs/2108.02667) | ACMMM 2021 | DepthNet | Binary CE loss, Depth loss, Inter-Domain Compatible Loss, Inter-Class Separable Loss | S|
| [HFN+MP](https://arxiv.org/abs/2110.06753) | 2021 | Two-stream ResNet50 | Binary CE loss, MSE loss | S|
| [SDFANet](https://ieeexplore.ieee.org/document/9600829) | TIFS 2021 | ResNet-18 | BCE loss + multi-grained loss + center loss + asymmetric triplet loss | S|
| [VLAD-VSA](https://dl.acm.org/doi/abs/10.1145/3474085.3475284) | ACMMM 2021 | DepthNet or ResNet18 | BCE loss + triplet loss + domain adversarial loss + orthogonal loss + centroid adaptation loss + intra loss | S|
| [FGHV](https://arxiv.org/abs/2112.14894) | AAAI 2022 | DepthNet | Variance + Relative Correlation + Distribution Discrimination Constraints | S|
| [SSAN](https://arxiv.org/pdf/2203.05340.pdf) | CVPR 2022 | DepthNet/ResNet18 | CE loss + Domain Adversarial loss + Contrastive loss | S|
| [AMEL](https://arxiv.org/abs/2207.09868) | ACMMM 2022 | DepthNet | CE loss, Depth loss, Feature consistency loss | S|
| [MD-FAS](https://arxiv.org/pdf/2208.11148.pdf) | ECCV 2022 | PhySTD | CE loss, Binary Mask loss, Source & Target distillation loss | S|
| [FRT-PAD](https://wentianzhang-ml.github.io/pad) | ECCV 2022 | ResNet18+GAT | CE loss | S|
| [CIFAS](https://ieeexplore.ieee.org/document/9859783) | ICME 2022 | ResNet18 | CE loss, triplet loss | S|
| [OneSideTriplet](https://arxiv.org/pdf/2211.15955.pdf) | FG 2023 | DepthNet+UNet | CE loss, triplet loss, Depth loss, Segmentation loss | S|
| [DiVT](https://openaccess.thecvf.com/content/WACV2023/papers/Liao_Domain_Invariant_Vision_Transformer_Learning_for_Face_Anti-Spoofing_WACV_2023_paper.pdf) | WACV 2023 | MobileViT-S | Domain-invariant Concentration and Attack-separation Loss | S|
| [ALDICF](https://link.springer.com/article/10.1007/s11263-023-01778-x) | IJCV 2023 | ResNet18, ResNet50 | Intra-domain and cross-domain discrimination loss, Conditional Domain Adversarial loss | S|
| [DKG+CSA+AIAW](https://arxiv.org/abs/2304.05640) | CVPR 2023 | DepthNet | BCE loss, Depth loss, Asymmetric Instance Adaptive Whiting loss | S|
| [SA-FAS](https://arxiv.org/abs/2303.13662) | CVPR 2023 | ResNet18 | Contrastive loss, Alignment loss | S|
| [SPDA]([https://arxiv.org/abs/2303.13662](https://ieeexplore.ieee.org/document/10095730)) | ICASSP 2023 | ResNet18 | BCE loss, Domain loss, Self-paced Cluster Mining loss, orthogonal loss | S|
| [CRFAS]([https://arxiv.org/abs/2303.13662](https://ieeexplore.ieee.org/document/10095329)) | ICASSP 2023 | ResNet18 | BCE loss, Domain loss, asymmetric triplet loss, Counterfactual Feature Generation loss | S|#### Zero/Few-shot learning
| Method | Year | Backbone | Loss | Input |
| -------- | ----- | ----- | ----- | ----- |
| [DTN](https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Deep_Tree_Learning_for_Zero-Shot_Face_Anti-Spoofing_CVPR_2019_paper.pdf) | CVPR 2019 | Deep Tree Network | Binary CE loss, Pixel-wise binary loss, Unsupervised Tree loss | RGB, HSV|
| [AIM-FAS](https://ojs.aaai.org/index.php/AAAI/article/view/6866) | AAAI 2020 | DepthNet | Depth loss, Contrastive Depth loss | RGB |
| [CM-PAD](https://ieeexplore.ieee.org/document/9304920) | IJCB 2021 | DepthNet, ResNet | Binary CE loss, Depth loss, Gradient alignment | RGB|
| [ViTAF](https://arxiv.org/abs/2203.12175) | ECCV 2022 | ViT+adaptor | CE Loss, Cosine loss | S|#### Anomaly detection
| Method | Year | Backbone | Loss | Input |
| -------- | ----- | ----- | ----- | ----- |
| [AE+LBP](https://ieeexplore.ieee.org/abstract/document/8698574) | 2018 | AutoEncoder | Reconstruction loss | RGB|
| [Anomaly](https://openaccess.thecvf.com/content_CVPRW_2019/papers/CFS/Perez-Cabo_Deep_Anomaly_Detection_for_Generalized_Face_Anti-Spoofing_CVPRW_2019_paper.pdf) | 2019 | ResNet50 | Triplet focal loss, Metric-Softmax loss | RGB|
| [Anomaly2](https://ieeexplore.ieee.org/document/8682253) | 2019 | GoogLeNet or ResNet50 | Mahalanobis distance | RGB|
| [Hypersphere](https://www.researchgate.net/publication/338920244_UNSEEN_FACE_PRESENTATION_ATTACK_DETECTION_WITH_HYPERSPHERE_LOSS) | 2020 | ResNet18 | Hypersphere loss | RGB, HSV |
| [Ensemble-Anomaly](https://ieeexplore.ieee.org/document/9190814) | 2020 | GoogLeNet or ResNet50 | Gaussian Mixture Model (not end-to-end) | RGB, patches|
| [MCCNN](https://ieeexplore.ieee.org/document/9153044) | 2020 | LightCNN | Binary CE loss, Contrastive loss | Grayscale, IR, Depth, Thermal|
| [End2End-Anomaly](https://arxiv.org/abs/2007.05856) | 2020 | VGG-Face | Binary CE loss, Pairwise confusion | RGB|
| [ClientAnomaly](https://www.sciencedirect.com/science/article/pii/S0031320320304994) | PR 2020 | ResNet50 or GoogLeNet or VGG16 | One-class SVM or Mahalanobis distance or Gaussian Mixture Model | RGB|
| [ContrastiveEVT](https://dl.acm.org/doi/abs/10.1145/3474085.3475538) | ACM MM 2021 | cVAE | Binary CE loss, reconstruction loss, contrastive loss| RGB|
| [OneClassKD](https://arxiv.org/abs/2205.03792) | TIFS 2022 | DepthNet | Pixel-wise Binary CE loss, multi-level KD loss| RGB|#### Semi- & Self-supervision
| Method | Year | Semi/Self | Backbone | Loss |
| -------- | ----- | ----- | ----- | ----- |
| [SCNN++PL+TC](https://ieeexplore.ieee.org/document/9387164) | TIP 2021 | Semi; Pseudo-label| ResNet18 | CE Loss |
| [USDAN](https://www.sciencedirect.com/science/article/pii/S0031320321000753?via%3Dihub) | PR 2021 | Semi; Distribution Alignment| ResNet18 | Adaptive binary CE loss, Entropy loss, Adversarial loss |
| [EPCR](https://ieeexplore.ieee.org/document/10012352) | TIFS 2023 | Semi; Consistency Regularization | CDCN | Prediction- & Embedding-level reconstruction loss|
| [TSS](https://www.sciencedirect.com/science/article/pii/S0167865522000605) | PRL 2022 | Self; Pretext task | ResNet18+BiLSTM | CE loss for temporal sampling prediction|
| [ACL-FAS](https://link.springer.com/chapter/10.1007/978-3-031-18910-4_39) | PRCV 2022 | Self; Contrastive learning | - | Region-Based Similarity Loss, Contrastive & Anti-contrastive loss|
| [MIM-FAS](https://link.springer.com/chapter/10.1007/978-3-031-18907-4_62) | PRCV 2022 | Self; Masked Image Modeling | ViT | Reconstruction loss|
| [DF-DM](https://ieeexplore.ieee.org/document/10051654) | TNNLS 2023 | Self; Pretext task| DeepPixBiS, SSDG-R, CDCN | GAN loss, Interpolation-based Consistency loss |
| [MCAE](https://arxiv.org/abs/2302.08674) | 2023 | Self+Supervised; Masked Image Modeling | ViT | Reconstruction loss + Supervised Contrastive loss|
| [AMA+M2A2E](https://arxiv.org/pdf/2302.05744.pdf) | 2023 | Self; Masked Image Modeling| ViT | Reconstruction loss |#### Continual learning
| Method | Year | Replay or not | Backbone | Loss |
| -------- | ----- | ----- | ----- | ----- |
| [CM-PAD](https://ieeexplore.ieee.org/document/9304920) | IJCB 2020 | with Replay | DepthNet | batch/overall meta loss|
| [Experience Replay](https://openaccess.thecvf.com/content/ICCV2021/papers/Rostami_Detection_and_Continual_Learning_of_Novel_Face_Presentation_Attacks_ICCV_2021_paper.pdf) | ICCV 2021 | with Replay| ResNet50 | BCE loss for identified novel and replayed samples |
| [DCDCA+PPCR](https://arxiv.org/abs/2303.09914) | 2023 | Rehearsal-Free | ViT | BCE loss, Proxy Prototype Contrastive Regularization |### 3️⃣ Deep FAS methods with advanced sensor
#### Learning upon specialized sensor
| Method | Year | Backbone | Loss | Input | Static/Dynamic |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [Thermal-FaceCNN](https://www.mdpi.com/2073-8994/11/3/360) | 2019 | AlexNet | Regression loss | Thermal infrared face image | S|
| [SLNet](http://www.ee.cityu.edu.hk/~lmpo/publications/2019_ESA_SLNet.pdf) | 2019 | 17-layer CNN | Binary CE loss | Stereo (left&right) face images | S|
| [Aurora-Guard](https://arxiv.org/abs/1902.10311) | 2019 | U-Net | Binary CE loss, Depth regression, Light Regression | Casted face with dynamic changing light specified by random light CAPTCHA | D|
| [LFC](http://www.ee.cityu.edu.hk/~lmpo/publications/2019_JEI_Face_Liveness.pdf) | 2019 | AlexNet | Binary CE loss | Ray difference/microlens images from light field camera | S|
| [PAAS](https://dl.acm.org/doi/10.1145/3441250.3441254) | 2020 | MobileNetV2 | Contrastive loss, SVM | Four-directional polarized face image | S|
| [Face-Revelio](https://dl.acm.org/doi/10.1145/3372224.3419206) | 2020 | Siamese-AlexNet | L1 distance | Four flash lights displayed on four quarters of a screen | D|
| [SpecDiff](https://arxiv.org/abs/1907.12400) | 2020 | ResNet4 | Binary CE loss | Concatenated face images w/ and w/o flash | S|
| [MC-PixBiS](https://arxiv.org/abs/2007.11469) | 2020 | DenseNet161 | Binary mask loss | SWIR images differences | S|
| [Thermalization](https://www.mdpi.com/1424-8220/20/14/3988) | 2020 | YOLO V3+GoogLeNet | Binary CE loss | Thermal infrared face image | S|
| [DP Bin-Cls-Net](https://ieeexplore.ieee.org/document/9248008) | 2021 | Shallow U-Net + Xception | Transformation consistency, Relative disparity loss, Binary CE loss | DP image pair | S|#### Multi-modal learning
| Method | Year | Backbone | Loss | Input | Fusion |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [FaceBagNet](https://openaccess.thecvf.com/content_CVPRW_2019/html/CFS/Shen_FaceBagNet_Bag-Of-Local-Features_Model_for_Multi-Modal_Face_Anti-Spoofing_CVPRW_2019_paper.html) | 2019 | Multi-stream CNN | Binary CE loss | RGB, Depth, NIR face patches | Feature-level|
| [FeatherNets](https://arxiv.org/abs/1904.09290) | 2019 | Ensemble-FeatherNet | Binary CE loss | Depth, NIR | Decision-level |
| [Attention](https://openaccess.thecvf.com/content_CVPRW_2019/html/CFS/Wang_Multi-Modal_Face_Presentation_Attack_Detection_via_Spatial_and_Channel_Attentions_CVPRW_2019_paper.html) | 2019 | ResNet18 | Binary CE loss, Center loss | RGB, Depth, NIR | Feature-level|
| [mmfCNN](https://dl.acm.org/doi/10.1145/3343031.3351001) | ACMMM 2019 | ResNet34 | Binary CE loss, Binary Center Loss | RGB, NIR, Depth, HSV, YCbCr | Feature-level|
| [MM-FAS](https://openaccess.thecvf.com/content_CVPRW_2019/papers/CFS/Parkin_Recognizing_Multi-Modal_Face_Spoofing_With_Face_Recognition_Networks_CVPRW_2019_paper.pdf) | 2019 | ResNet18/50 | Binary CE loss | RGB, NIR, Depth | Feature-level|
| [AEs+MLP](https://arxiv.org/abs/1907.04048) | 2019 | Autoencoder, MLP | Binary CE loss, Reconstruction loss | Grayscale-Depth-Infrared composition| Input-level|
| [SD-Net](https://ieeexplore.ieee.org/document/8995504/) | 2019 | ResNet18 | Binary CE loss | RGB, NIR, Depth | Feature-level|
| [Dual-modal](https://ieeexplore.ieee.org/document/8924988) | 2019 | MoblienetV3 | Binary CE loss | RGB, IR | Feature-level|
| [Parallel-CNN](https://iopscience.iop.org/article/10.1088/1742-6596/1549/4/042069) | 2020 | Attentional CNN | Binary CE loss | Depth, NIR | Feature-level|
| [Multi-Channel Detector](https://arxiv.org/abs/2006.16836) | 2020 | RetinaNet (FPN+ResNet18) | Landmark regression, Focal loss | Grayscale-Depth-Infrared composition | Input-level|
| [PSMM-Net](https://openaccess.thecvf.com/content/WACV2021/html/Liu_CASIA-SURF_CeFA_A_Benchmark_for_Multi-Modal_Cross-Ethnicity_Face_Anti-Spoofing_WACV_2021_paper.html) | 2020 | ResNet18 | Binary CE loss for each stream | RGB, Depth, NIR | Feature-level|
| [PipeNet](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Yang_PipeNet_Selective_Modal_Pipeline_of_Fusion_Network_for_Multi-Modal_Face_CVPRW_2020_paper.pdf) | 2020 | SENet154 | Binary CE loss | RGB, Depth, NIR face patches | Feature-level|
| [MM-CDCN](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Yu_Multi-Modal_Face_Anti-Spoofing_Based_on_Central_Difference_Networks_CVPRW_2020_paper.pdf) | 2020 | CDCN | Pixel-wise binary loss, Contrastive depth loss | RGB, Depth, NIR | Feature&Decision-level|
| [HGCNN](https://arxiv.org/abs/1811.11594) | 2020 | Hypergraph-CNN, MLP | Binary CE loss | RGB, Depth | Feature-level|
| [MCT-GAN](https://link.springer.com/article/10.1007/s11042-020-08952-0) | 2020 | CycleGAN, ResNet50 | GAN loss, Binary CE loss | RGB, NIR | Input-level|
| [D-M-Net](https://ieeexplore.ieee.org/document/9372969) | 2021 | ResNeXt | Binary CE loss | Multi-preprocessed Depth, RGB-NIR composition | Input&Feature-level|
| [MA-Net](https://ieeexplore.ieee.org/document/9374963) | TIFS 2021 | CycleGAN, ResNet18 | Binary CE loss, GAN loss | RGB, NIR | Feature-level|
| [AMT](https://arxiv.org/abs/2110.09108) | TMM 2021 | Translator: shallow encoder+decoder + ResNet; Discriminator: DenseNet | BCE loss, Pixel-wise binary loss, reconstruction loss | illumination normalized RGB or NIR or thermal or Depth | Input-level|
| [CompreEval](https://arxiv.org/abs/2202.10286) | 2022 | DenseNet-161 | BCE loss, Pixel-wise binary loss | RGB, Depth, NIR, SWIR, Thermal | Input-level|
| [Conv-MLP](https://ieeexplore.ieee.org/document/9796574) | TIFS 2022 | Conv-MLP | Binary CE Loss, Moat Loss | RGB, Depth, NIR | Input-level|
| [Echo-FAS](https://ieeexplore.ieee.org/abstract/document/9868051) | TIFS 2022 | ResNet18, Transformer | Binary CE Loss | RGB, Vocal | Feature-level|
| [AMA+M2A2E](https://arxiv.org/pdf/2302.05744.pdf) | 2023 | ViT | BCE Loss, reconstruction loss for MAE | RGB, Depth, IR | Feature-level|
| [SNM]([https://arxiv.org/pdf/2302.05744.pdf](https://ieeexplore.ieee.org/abstract/document/10176121)) | TIFS 2023 | ResNet18 | BCE Loss, center loss, cosine loss | Depth, IR | Feature-level|#### Flexible-modal learning
| Method | Year | Backbone | Loss | Input | Fusion |
| -------- | ----- | ----- | ----- | ----- | ----- |
| [CMFL](https://arxiv.org/abs/2103.00948) | CVPR 2021 | DenseNet161 | Binary CE loss, Cross modal focal loss | RGB, Depth | Feature-level|
| [MA-ViT](https://www.ijcai.org/proceedings/2022/0165.pdf) | IJCAI 2022 | ViT-S/16 | Binary CE Loss on image and modality | RGB, Depth, NIR | Input&Feature-level|
| [FlexModal-FAS](https://arxiv.org/abs/2202.08192) | CVPRW 2023 | CDCN, ResNet50, ViT | BCE loss, Pixel-wise binary loss | RGB, Depth, IR | Feature-level|
| [FM-ViT](https://arxiv.org/abs/2305.03277) | TIFS 2023 | ViT | BCE loss for flexible-modal classification heads | RGB, Depth, IR | Feature-level|