Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aaronspring/aaronspring


https://github.com/aaronspring/aaronspring

Last synced: 7 days ago
JSON representation

Awesome Lists containing this project

README

        

[![GitHub Badge](https://img.shields.io/github/followers/aaronspring?style=social)](https://github.com/aaronspring?tab=followers)
[![Twitter Badge](https://img.shields.io/twitter/follow/realaaronspring?style=social)](https://twitter.com/realaaronspring)
[![Google Scholar Badge](https://img.shields.io/badge/Google-Scholar-lightgrey)](https://scholar.google.com/citations?user=tUuCui0AAAAJ&hl=en&oi=sra)
[![LinkedIn Badge](https://img.shields.io/badge/My-LinkedIn-blue)](https://www.linkedin.com/in/springaaron)
[![XING Badge](https://img.shields.io/badge/My-XING-green)](https://www.xing.com/profile/Aaron_Spring/cv)

- šŸ‘‹ Hi, Iā€™m Aaron.
- šŸ‘Øā€šŸ’» used to work on decadal carbon cycle predictions at [@mpi_meteo](https://mpimet.mpg.de/startseite) funded by [@4c_h2020](https://twitter.com/4c_h2020)
- šŸ‘€ interested in how Artificial Intelligence and Machine Learning improve (subseasonal) forecasts
- šŸ‘Øā€šŸ’» now Data scientist at New Work SE working on CTR prediction of native ads in XING

## Portfolio
- šŸŒ± free-lanced part-time als Data Engineer for [WMO](https://public.wmo.int/en) hosting [`s2s-ai-competition`](https://s2s-ai-challenge.github.io)
- šŸ“ core contributor to [`xskillscore`](https://github.com/xarray-contrib/xskillscore), multi-dimensional [`xarray`](https://github.com/pydata/xarray/)-based metrics for verifying forecasts
- āŒØļø maintainer of [`climpred`](https://github.com/pangeo-data/climpred), multi-dimensional [`xarray`](https://github.com/pydata/xarray/)-based forecast verfication toolbox
- šŸ’¾ core contributor of [`xbitinfo`](https://github.com/observingClouds/xbitinfo) to reduce storage of geospatial data by compression after bitrounding
- āœØ passionate about [making climate data easily usable](https://github.com/aaronspring/remote_climate_data/) in python with [`xarray`](https://github.com/pydata/xarray/) and [`intake`](https://github.com/intake/intake) [plugins](https://intake.readthedocs.io/en/latest/plugin-directory.html)
- šŸ“‹ reproducible science following [Irving, 2015 (BAMS)](http://journals.ametsoc.org/doi/full/10.1175/BAMS-D-15-00010.1):
- [Spring and Ilyina, 2020, Geophys. Res. Lett.](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085311) [repo](https://github.com/aaronspring/Spring_and_Ilyina_2020_GRL)
- [Spring et al., 2020, Env. Res. Lett.](https://doi.org/10.1088%2F1748-9326%2Fabc443) [repo](https://github.com/aaronspring/Spring_etal_2020_ERL)
- [Spring et al., 2021, Earth Sys. Dyn.](https://doi.org/10.5194/esd-12-1139-2021) [repo](https://github.com/aaronspring/Spring_etal_2021_ESD)

## Contact
- šŸ“« [email](mailto:[email protected])
- šŸ•Šļø [Twitter](https://twitter.com/realaaronspring/)
- šŸ“‡ [LinkedIn](https://www.linkedin.com/in/springaaron/)

![github stats](https://github-readme-stats.vercel.app/api?username=aaronspring&show_icons=true)