Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aashishnandakumar/intellidoc-api
A scalable, asynchronous backend service for document processing and AI-powered chat interactions using RAG technology.
https://github.com/aashishnandakumar/intellidoc-api
ajax chromadb django django-rest-framework huggingface jquery langchain openai rag websockets
Last synced: about 1 month ago
JSON representation
A scalable, asynchronous backend service for document processing and AI-powered chat interactions using RAG technology.
- Host: GitHub
- URL: https://github.com/aashishnandakumar/intellidoc-api
- Owner: AashishNandakumar
- Created: 2024-09-12T16:22:52.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-10-30T15:09:28.000Z (3 months ago)
- Last Synced: 2024-12-21T23:48:06.425Z (about 1 month ago)
- Topics: ajax, chromadb, django, django-rest-framework, huggingface, jquery, langchain, openai, rag, websockets
- Language: Python
- Homepage:
- Size: 1000 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# IntelliDoc: Document Processing & RAG Chatbot System
A Django-based system that combines document processing capabilities with a RAG (Retrieval-Augmented Generation) chatbot service. The system processes various document formats, creates embeddings, and enables interactive conversations with document content.
![Screenshot from 2024-10-29 16-11-21-1](https://github.com/user-attachments/assets/16804961-6fc9-4277-8b8a-f20bd09542b1)
RESTful APIs:
> https://www.postman.com/noire-aashish-nk/workspace/intellidoc-api/collection/28604040-8978b6ad-39f6-48d5-a37a-24eb6eb51d93?action=share&creator=28604040## Features
- **Document Processing Service**
- Support for multiple file formats (.txt, .pdf, .doc, .docx)
- Automatic text extraction and embedding generation
- Vector database storage using ChromaDB
- Asynchronous processing using Celery
- Unique asset ID generation for each document- **RAG Chatbot Service**
- Real-time chat interface using WebSocket
- Support for multiple concurrent chat threads
- Chat history tracking and retrieval
- Stream-based response generation
- Integration with LangChain for document retrieval## System Requirements
- Python 3.8+
- Redis Server
- Virtual Environment (recommended)## Installation
1. Clone the repository:
```bash
git clone
cd
```2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```3. Install dependencies:
```bash
pip install -r requirements.txt
```4. Set up environment variables:
Create a `.env` file in the root directory with the following variables:
```
SECRET_KEY=your_django_secret_key
OPENAI_API_KEY=your_openai_api_key
```5. Initialize the database:
```bash
python manage.py migrate
```6. Start Redis server:
```bash
redis-server
```7. Start Celery worker:
```bash
celery -A document_processor worker --loglevel=info
```8. Run the development server:
```bash
python manage.py runserver
```## API Endpoints
### Document Processing
- **POST** `/api/documents/process/`
- Accepts multipart form data with a file
- Returns a task ID for tracking the processing status
- Supported file types: .txt, .pdf, .doc, .docx### Chat Interface
- **POST** `/api/chat/start/`
- Input: `{"asset_id": "string"}`
- Returns: `{"thread_id": "string"}`- **POST** `/api/chat/message/`
- Input: `{"thread_id": "string", "user_message": "string"}`
- Returns: Streamed response from the chatbot- **GET** `/api/chat/history/`
- Query parameter: `thread_id`
- Returns: Array of chat messages with timestamps### WebSocket Connection
- **WS** `/ws/chat//`
- Establishes real-time chat connection
- Handles message streaming and updates## Project Structure
```
├── chat/ # Chat application
│ ├── consumers.py # WebSocket consumers
│ ├── models.py # Chat models
│ ├── utils.py # Chat utilities
│ └── views.py # Chat views
├── processor/ # Document processing application
│ ├── tasks.py # Celery tasks
│ ├── utils.py # Processing utilities
│ └── views.py # Processing views
└── document_processor/ # Project configuration
├── celery.py # Celery configuration
└── settings.py # Django settings
```## Technologies Used
- **Backend Framework**: Django & Django REST Framework
- **WebSocket**: Django Channels
- **Task Queue**: Celery
- **Message Broker**: Redis
- **Vector Database**: ChromaDB
- **Machine Learning**: LangChain, HuggingFace Embeddings
- **Document Processing**: PyPDF2, python-docx## Error Handling
The system includes comprehensive error handling for:
- Invalid file types
- Processing failures
- Missing documents
- Invalid chat threads
- WebSocket connection issues## Performance Considerations
- Asynchronous document processing using Celery
- Efficient vector storage and retrieval using ChromaDB
- WebSocket-based real-time communication
- Streaming responses for better user experience## Security Measures
- CSRF protection enabled
- File type validation
- Secure WebSocket connections
- Environment variable management
- Input sanitization## Development
To contribute to the project:
1. Create a new branch for your feature
2. Write tests for new functionality
3. Ensure code follows PEP 8 style guide
4. Submit a pull request with detailed description## Testing
Run tests using:
```bash
python manage.py test
```## Deployment Considerations
- Configure ALLOWED_HOSTS in settings.py
- Set DEBUG=False in production
- Use proper WSGI/ASGI server (e.g., Gunicorn, Daphne)
- Set up proper SSL/TLS certificates
- Configure production-grade databases
- Set up proper logging