https://github.com/abdulfatir/redsds
Pytorch implementation of RED-SDS (NeurIPS 2021).
https://github.com/abdulfatir/redsds
Last synced: 6 months ago
JSON representation
Pytorch implementation of RED-SDS (NeurIPS 2021).
- Host: GitHub
- URL: https://github.com/abdulfatir/redsds
- Owner: abdulfatir
- Created: 2021-10-26T13:33:23.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-10-27T05:43:25.000Z (almost 4 years ago)
- Last Synced: 2025-03-31T00:41:17.671Z (7 months ago)
- Language: Python
- Homepage:
- Size: 59.6 KB
- Stars: 18
- Watchers: 2
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS)
[](https://arxiv.org/abs/2110.13878)
[](https://neurips.cc)This repository contains a reference implementation of RED-SDS, a non-linear state space model proposed in the NeurIPS 2021 paper [*Deep Explicit Duration Switching Models for Time Series*](https://arxiv.org/abs/2110.13878).
## Environment Setup
* Run `pip install -r requirements.txt`.
## Usage
### Reevaluating Trained Models
* Download the trained models from [this link](https://drive.google.com/drive/folders/19DmHwmsDZGbU4WEujwp0j1HWMdA5dDhU?usp=sharing).
* Run `python reevaluate.py --ckpt .pt`.### Training Models
#### Segmentation
* Generate/download datasets.
* To generate the bouncing ball and 3 mode system datasets, use the notebooks in `./data/`. Alternatively, you can download the datasets from [this link](https://drive.google.com/drive/folders/1g5O2jktqWnH2p1BCkn1WtBBmSEF5AMTD?usp=sharing).
* To download and preprocess the dancing bees dataset, run `./data/bee.sh`.
* Run `python run_segmentation.py --config configs/.yaml --device cuda:0` to train the RED-SDS model.
* Run `tensorboard --logdir /path/to/results/dir` to visualize results.#### Forecasting
* Run `python run_gts_univariate.py --config configs/.yaml --device cuda:0` to train the RED-SDS model. The dataset will be downloaded automatically.
* Run `tensorboard --logdir /path/to/results/dir` to visualize results.## Questions
For any questions regarding the code or the paper, please email [Fatir](mailto:abdulfatir@u.nus.edu), [Konstantinos](mailto:kbenidis@amazon.com), or [Richard](mailto:kurler@amazon.com).
## BibTeX
If you find this repository or the ideas presented in our paper useful for your research, please consider citing our paper.
```
@inproceedings{ansari2021deep,
author = {Abdul Fatir Ansari and Konstantinos Benidis and Richard Kurle and Ali Caner Turkmen and Harold Soh and Alex Smola and Bernie Wang and Tim Januschowski},
title = {Deep Explicit Duration Switching Models for Time Series},
year = {2021},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
}
```## Acknowledgement
This repo contains parts of code based on the following repos:
| Repo | Copyright (c) | License |
| ------------- | ---------- | ------------- |
| [google-research/google-research/snlds](https://github.com/google-research/google-research/tree/master/snlds) | The Google Research Authors | [Apache 2.0](http://www.apache.org/licenses/LICENSE-2.0) |
| [mattjj/pyslds](https://github.com/mattjj/pyslds) | Matthew James Johnson | [MIT](https://github.com/mattjj/pyslds/blob/master/LICENSE-MIT)