Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/abdulfatir/subkmeans
Numpy and pyCUDA implementation of subKmeans
https://github.com/abdulfatir/subkmeans
clustering cuda kdd kmeans numpy pycuda python subspace-clustering
Last synced: about 1 month ago
JSON representation
Numpy and pyCUDA implementation of subKmeans
- Host: GitHub
- URL: https://github.com/abdulfatir/subkmeans
- Owner: abdulfatir
- Created: 2018-03-06T15:02:08.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-20T11:12:09.000Z (over 6 years ago)
- Last Synced: 2024-12-05T17:45:59.137Z (about 1 month ago)
- Topics: clustering, cuda, kdd, kmeans, numpy, pycuda, python, subspace-clustering
- Language: Python
- Homepage:
- Size: 1.94 MB
- Stars: 1
- Watchers: 5
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Fast Subspace Clustering
## A GPU Implementation of *subKMeans*[1]This is a CPU and GPU implementation of the KDD 2017 paper **Towards an Optimal Subspace for K-Means**[1].
The CPU implementation (`mode=cpu`) is written in Numpy.
There are 2 GPU implementations:
1. Using only PyCUDA and scikit-cuda API (`mode=gpu`)
2. Using PyCUDA with custom kernels optimized for this algorithm (`mode=gpu_custom`)### Dependencies
* Numpy
* PyCUDA: `pip install pycuda`
* scikit-cuda: Install from source as described [here](https://github.com/lebedov/scikit-cuda/blob/master/docs/source/install.rst).
We tested using [commit #249538c](https://github.com/lebedov/scikit-cuda/commit/249538c95e68d891e2477d93eeff57941c99eb93).
* Matplotlib (for plots)
* scikit-learn (for computing NMI score)Note: We tested this implementation only on Python 2. There are some issues with the GPU version on Python 3.
### Usage
Go to `src/`
```bash
python main.py -d= -k= -mode=
```
For help: `python main.py -h`3 available modes: `cpu`, `gpu`, `gpu_custom`
#### Example Usage
`python main.py -d=wine -k=3 -mode=cpu`
##### Sample Output
```
[i] Itr 1: 24 points changed
[i] Itr 2: 7 points changed
[i] Itr 3: 7 points changed
[i] Itr 4: 2 points changed
[i] Itr 5: 1 points changed
[i] Itr 6: 0 points changed[i] Results
[*] m: 2
[*] NMI: 0.87590
```### References
[1] *Mautz et. al.* Towards an Optimal Subspace for K-Means