Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/abhilash1910/deepgenerator

Sentence Sequence Transduction Library (Seq to Seq) for text generation using sequential generative Vanilla RNN using numpy
https://github.com/abhilash1910/deepgenerator

adagrad generativemodeling nlp numpy optimizer rnn seq2seq-model transduction vanilla-rnn

Last synced: 2 days ago
JSON representation

Sentence Sequence Transduction Library (Seq to Seq) for text generation using sequential generative Vanilla RNN using numpy

Awesome Lists containing this project

README

        

# DeepGenerator :pushpin:
Sentence Sequence Transduction Library (Seq to Seq) for text generation using sequential generative Vanilla RNN using numpy
The library is a generative network built purely in numpy and matplotlib. The library is a sequence to sequence transduction
library for generating n sequence texts from given corpus. Metrics for accuracy-BLEU has provided a considerable accuracy metric
for epochs greater than 20000.The library is sequential and includes intermediate tanh activation in the intermediate stages with
softmax cross entropy loss ,and generalised Adagrad optimizer.
# Installation:

```python
pip install DeepGenerator
```

# library facts:

initialization:
```python


import DeepGenerator.DeepGenerator as dg
```
Object Creation:

```python
deepgen=dg.DeepGenerator()
```

# Functions:
1.attributes for users- learning rate,epochs,local path of data storage(text format),number of hidden layers,kernel size,sequence/step size,count of next words
2.data_abstract function- Takes arguements (self,path,choice) -
path= local path of text file
choice= 'character_generator' for character generation network
'word_generator' for word generator network
Returns data
Usage- ouput_data=deepgen.data_preprocess(DeepGenerator.path,DeepGenerator.choice)
3.data_preprocess function- Takes arguements (self,path,choice)-
path= local path of text file
choice= 'character_generator' for character generation network
'word_generator' for word generator network
Returns data,data_size,vocab_size,char_to_idx,idx_to_char
Usage- data,data_size,vocab_size,char_to_idx,idx_to_char=deepgen.data_preprocess(DeepGenerator.path,DeepGenerator.choice)
4.hyperparameters function-Takes arguements (self,hidden_layers_size,no_hidden_layers,learning_rate,step_size,vocab_size)-
hidden_layers-kernel size-recommended under 2048
no_hidden_layers- sequential intermediate layers
learning_rate- learning_rate (range of 1e-3)
step_size- sequence length(should be <= vocab_size)
vocab_size
Returns hidden_layers,learning_rate,step_size,hid_layer,Wxh,Whh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by
Usage- hidden_layers,learning_rate,step_size,hid_layer,Wxh,Whh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by=deepgen.hyperparamteres(dg.hidden_layers_size,dg.no_hidden_layers,dg.learning_rate,dg.step_size,dg.vocab_size)
5. loss_evaluation function- Takes arguements (self,inp,target,h_previous,hidden_layers,hid_layer,Wxh,Wh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by) -
inp= character to indices encoded dictionary of input text
target=character to indices encoded dictionary of generated text
h_previous-value of hidden layer for previous state
hidden_layers-kernel size
hid_layer-sequential hidden layers
---------- sequential layers---------
-----weight tensors------
Wxh- weight tensor of input to first hidden layer
Wh1- weight tensor of first hidden layer to first layer of sequential network
Whh_vector-weight tensors of intermediate sequential network
Whh- weight tensor of last sequential to last hidden layer
Why-weight tensor of last hidden layer to output layer
-----bias tensors-------
bh1-bias of first hidden layer
bh_vector-bias of intermediate sequential layers
bhh-bias of end hidden layer
by-bias at output

Returns loss,dWxh,dWhh1,dWhh_vector,dWhh,dWhy,dbh1,dbh_vector,dbh,dby,h_state[len(inp)-1],Whh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by
Usage loss,dWxh,dWhh1,dWhh_vector,dWhh,dWhy,dbh1,dbh_vector,dbh,dby,h_state[len(inp)-1],Whh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by=deepgen.loss_evaluation(dg.inp,dg.target,dg.h_previous,dg.hidden_layers,dg.hid_layer,dg.Wxh,dg.Wh1,dg.Whh_vector,dg.Whh,dg.Why,dg.bh1,dg.bh_vector,dg.bh,dg.by)
6.start_predict function-Takes arguements (self,count,epochs,Wh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by,hid_layer,char_to_idx,idx_to_char,vocab_size,learning_rate,step_size,data,hidden_layers)
counts-count of sequences to generate
epochs-epochs
Whi -weight tensors
bhi-bias tensors
hid_layer-no of sequential layers
char_to_idx-character to index encoder
idx_to_char-index to character decoder
vocab_size-vocab_size
learning_rate-learning_rate
step_size-sequence length
hidden_layers-kernel size
Returns epochs,gradient losses vector -Beta release(out_txt_vector -vector of putput generated sentences - *() implies not yet shipped to pypi)
Usage-epochs,gradient_loss,*(out_txt_vector)=deepgen.start_predict(dg.count,dg.epochs,dg.Whh1,dg.Whh_vector,dg.Whh,dg.Why,dg.bh1,dg.bh_vector,dg.bh,dg.by,dg.hid_layer,dg.char_to_idx,dg.idx_to_char,dg.vocab_size,dg.learning_rate,dg.step_size,dg.data,dg.hidden_layers)
7.output_sample function- Takes arguements (self,h1,seed_ix,n,vocab_size,Wh1,Whh_vector,Whh,Why,bh1,bh_vector,bh,by,hid_layer)-
h1-hidden layer previous state
seed_ix-starting point for generation
n-count of text to generate
Whi-weight tensor
bhi-bias tensor
hid_layer-no of sequential layers
Returns ixs- integer vector of maximum probability characters/words
Usage-ixs=deepgen.output_sample(dg.h1,dg.seed_ix,dg.n,dg.vocab_size,dg.Wh1,dg.Whh_vector,dg.Whh,dg.Why,dg.bh1,dg.bh_vector,dg.bh,dg.by,dg.hid_layer)
8.plot_loss function -Takes arguements(self,epochs,gradient_loss)-
epochs-epoch vector
gradient_loss- gradient loss vector
Returns void
Usage-deepgen.plot_loss(dg.epoch,dg.gradient_loss)
# Usage-
The file sample.py contains the usage specification and syntax for generating text
Jupyter notebook -Deepgen.ipynb is also present as a sample with different text files.

# Library link:
https://pypi.org/project/DeepGenerator/0.1/