https://github.com/abhinavsharma07/rag
https://github.com/abhinavsharma07/rag
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/abhinavsharma07/rag
- Owner: AbhinavSharma07
- License: mit
- Created: 2025-07-08T12:15:28.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-07-16T17:04:13.000Z (3 months ago)
- Last Synced: 2025-07-17T13:54:09.641Z (3 months ago)
- Language: Python
- Size: 65.4 KB
- Stars: 1
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 🚀✨ Retrieval-Augmented Generation (RAG)
Welcome to your **go-to boilerplate for building powerful Retrieval-Augmented Generation systems**! This repo equips you with the essential tools to combine cutting-edge language models with robust document retrieval — delivering answers that are **accurate**, **context-aware**, and **grounded** in your data.---
## 🔍 What is RAG?
RAG (Retrieval-Augmented Generation) is a breakthrough approach that combines:
- 🔎 **Retriever:** Searches your knowledge base (documents, PDFs, databases) to find the most relevant context.
- 🤖 **Generator:** Uses Large Language Models (LLMs) to generate responses grounded in the retrieved information.This hybrid method bridges **raw language generation** and **fact-based retrieval** — perfect for applications needing trustworthy AI answers.
---
## ⚡ Features
- 📂 Seamless document ingestion & chunking (PDFs, text, more)
- 🧠 Powerful embeddings with OpenAI or Hugging Face models
- 🎯 Fast similarity search via FAISS, optionally ElasticSearch
- 💬 Flexible prompt generation & LLM integration (OpenAI GPT, etc.)
- 📚 Chunk-level citations & source attribution
- 🛠️ Modular, extensible architecture ready for production
- 🐳 Optional Docker support for easy deployment---
## 🛠️ Tech Stack Overview
| Layer | Technology |
|----------------|----------------------------------|
| Embeddings | OpenAI API / Hugging Face Models |
| Vector Search | FAISS (high-performance) |
| Backend | Python + FastAPI / Flask |
| Generation | OpenAI GPT / Other LLMs |
| Storage | In-memory or persistent DB |
| Deployment | Docker, Kubernetes (optional) |---