Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aboSamoor/polyglot
Multilingual text (NLP) processing toolkit
https://github.com/aboSamoor/polyglot
Last synced: 2 months ago
JSON representation
Multilingual text (NLP) processing toolkit
- Host: GitHub
- URL: https://github.com/aboSamoor/polyglot
- Owner: aboSamoor
- License: other
- Created: 2014-06-30T02:07:45.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2023-11-10T03:06:08.000Z (about 1 year ago)
- Last Synced: 2024-10-29T11:23:13.511Z (2 months ago)
- Language: Python
- Homepage: http://polyglot-nlp.com
- Size: 418 KB
- Stars: 2,312
- Watchers: 77
- Forks: 338
- Open Issues: 170
-
Metadata Files:
- Readme: README.rst
- Changelog: HISTORY.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
- Authors: AUTHORS.rst
Awesome Lists containing this project
- awesome-python-machine-learning-resources - GitHub - 68% open · ⏱️ 22.09.2020): (文本数据和NLP)
- starred-awesome - polyglot - Multilingual text (NLP) processing toolkit (Python)
README
polyglot
========|Downloads| |Latest Version| |Build Status| |Documentation Status|
.. |Downloads| image:: https://img.shields.io/pypi/dm/polyglot.svg
:target: https://pypi.python.org/pypi/polyglot
.. |Latest Version| image:: https://badge.fury.io/py/polyglot.svg
:target: https://pypi.python.org/pypi/polyglot
.. |Build Status| image:: https://travis-ci.org/aboSamoor/polyglot.png?branch=master
:target: https://travis-ci.org/aboSamoor/polyglot
.. |Documentation Status| image:: https://readthedocs.org/projects/polyglot/badge/?version=latest
:target: https://readthedocs.org/builds/polyglot/Polyglot is a natural language pipeline that supports massive
multilingual applications.- Free software: GPLv3 license
- Documentation: http://polyglot.readthedocs.org.Features
~~~~~~~~- Tokenization (165 Languages)
- Language detection (196 Languages)
- Named Entity Recognition (40 Languages)
- Part of Speech Tagging (16 Languages)
- Sentiment Analysis (136 Languages)
- Word Embeddings (137 Languages)
- Morphological analysis (135 Languages)
- Transliteration (69 Languages)Developer
~~~~~~~~~- Rami Al-Rfou @ ``rmyeid gmail com``
Quick Tutorial
--------------.. code:: python
import polyglot
from polyglot.text import Text, WordLanguage Detection
~~~~~~~~~~~~~~~~~~.. code:: python
text = Text("Bonjour, Mesdames.")
print("Language Detected: Code={}, Name={}\n".format(text.language.code, text.language.name)).. parsed-literal::
Language Detected: Code=fr, Name=French
Tokenization
~~~~~~~~~~~~.. code:: python
zen = Text("Beautiful is better than ugly. "
"Explicit is better than implicit. "
"Simple is better than complex.")
print(zen.words).. parsed-literal::
[u'Beautiful', u'is', u'better', u'than', u'ugly', u'.', u'Explicit', u'is', u'better', u'than', u'implicit', u'.', u'Simple', u'is', u'better', u'than', u'complex', u'.']
.. code:: python
print(zen.sentences)
.. parsed-literal::
[Sentence("Beautiful is better than ugly."), Sentence("Explicit is better than implicit."), Sentence("Simple is better than complex.")]
Part of Speech Tagging
~~~~~~~~~~~~~~~~~~~~~~.. code:: python
text = Text(u"O primeiro uso de desobediência civil em massa ocorreu em setembro de 1906.")
print("{:<16}{}".format("Word", "POS Tag")+"\n"+"-"*30)
for word, tag in text.pos_tags:
print(u"{:<16}{:>2}".format(word, tag)).. parsed-literal::
Word POS Tag
------------------------------
O DET
primeiro ADJ
uso NOUN
de ADP
desobediência NOUN
civil ADJ
em ADP
massa NOUN
ocorreu ADJ
em ADP
setembro NOUN
de ADP
1906 NUM
. PUNCTNamed Entity Recognition
~~~~~~~~~~~~~~~~~~~~~~~~.. code:: python
text = Text(u"In Großbritannien war Gandhi mit dem westlichen Lebensstil vertraut geworden")
print(text.entities).. parsed-literal::
[I-LOC([u'Gro\\xdfbritannien']), I-PER([u'Gandhi'])]
Polarity
~~~~~~~~.. code:: python
print("{:<16}{}".format("Word", "Polarity")+"\n"+"-"*30)
for w in zen.words[:6]:
print("{:<16}{:>2}".format(w, w.polarity)).. parsed-literal::
Word Polarity
------------------------------
Beautiful 0
is 0
better 1
than 0
ugly -1
. 0Embeddings
~~~~~~~~~~.. code:: python
word = Word("Obama", language="en")
print("Neighbors (Synonms) of {}".format(word)+"\n"+"-"*30)
for w in word.neighbors:
print("{:<16}".format(w))
print("\n\nThe first 10 dimensions out the {} dimensions\n".format(word.vector.shape[0]))
print(word.vector[:10]).. parsed-literal::
Neighbors (Synonms) of Obama
------------------------------
Bush
Reagan
Clinton
Ahmadinejad
Nixon
Karzai
McCain
Biden
Huckabee
Lula
The first 10 dimensions out the 256 dimensions
[-2.57382345 1.52175975 0.51070285 1.08678675 -0.74386948 -1.18616164
2.92784619 -0.25694436 -1.40958667 -2.39675403]Morphology
~~~~~~~~~~.. code:: python
word = Text("Preprocessing is an essential step.").words[0]
print(word.morphemes).. parsed-literal::
[u'Pre', u'process', u'ing']
Transliteration
~~~~~~~~~~~~~~~.. code:: python
from polyglot.transliteration import Transliterator
transliterator = Transliterator(source_lang="en", target_lang="ru")
print(transliterator.transliterate(u"preprocessing")).. parsed-literal::
препрокессинг