Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aboSamoor/polyglot

Multilingual text (NLP) processing toolkit
https://github.com/aboSamoor/polyglot

Last synced: 2 months ago
JSON representation

Multilingual text (NLP) processing toolkit

Awesome Lists containing this project

README

        

polyglot
========

|Downloads| |Latest Version| |Build Status| |Documentation Status|

.. |Downloads| image:: https://img.shields.io/pypi/dm/polyglot.svg
:target: https://pypi.python.org/pypi/polyglot
.. |Latest Version| image:: https://badge.fury.io/py/polyglot.svg
:target: https://pypi.python.org/pypi/polyglot
.. |Build Status| image:: https://travis-ci.org/aboSamoor/polyglot.png?branch=master
:target: https://travis-ci.org/aboSamoor/polyglot
.. |Documentation Status| image:: https://readthedocs.org/projects/polyglot/badge/?version=latest
:target: https://readthedocs.org/builds/polyglot/

Polyglot is a natural language pipeline that supports massive
multilingual applications.

- Free software: GPLv3 license
- Documentation: http://polyglot.readthedocs.org.

Features
~~~~~~~~

- Tokenization (165 Languages)
- Language detection (196 Languages)
- Named Entity Recognition (40 Languages)
- Part of Speech Tagging (16 Languages)
- Sentiment Analysis (136 Languages)
- Word Embeddings (137 Languages)
- Morphological analysis (135 Languages)
- Transliteration (69 Languages)

Developer
~~~~~~~~~

- Rami Al-Rfou @ ``rmyeid gmail com``

Quick Tutorial
--------------

.. code:: python

import polyglot
from polyglot.text import Text, Word

Language Detection
~~~~~~~~~~~~~~~~~~

.. code:: python

text = Text("Bonjour, Mesdames.")
print("Language Detected: Code={}, Name={}\n".format(text.language.code, text.language.name))

.. parsed-literal::

Language Detected: Code=fr, Name=French

Tokenization
~~~~~~~~~~~~

.. code:: python

zen = Text("Beautiful is better than ugly. "
"Explicit is better than implicit. "
"Simple is better than complex.")
print(zen.words)

.. parsed-literal::

[u'Beautiful', u'is', u'better', u'than', u'ugly', u'.', u'Explicit', u'is', u'better', u'than', u'implicit', u'.', u'Simple', u'is', u'better', u'than', u'complex', u'.']

.. code:: python

print(zen.sentences)

.. parsed-literal::

[Sentence("Beautiful is better than ugly."), Sentence("Explicit is better than implicit."), Sentence("Simple is better than complex.")]

Part of Speech Tagging
~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

text = Text(u"O primeiro uso de desobediência civil em massa ocorreu em setembro de 1906.")

print("{:<16}{}".format("Word", "POS Tag")+"\n"+"-"*30)
for word, tag in text.pos_tags:
print(u"{:<16}{:>2}".format(word, tag))

.. parsed-literal::

Word POS Tag
------------------------------
O DET
primeiro ADJ
uso NOUN
de ADP
desobediência NOUN
civil ADJ
em ADP
massa NOUN
ocorreu ADJ
em ADP
setembro NOUN
de ADP
1906 NUM
. PUNCT

Named Entity Recognition
~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

text = Text(u"In Großbritannien war Gandhi mit dem westlichen Lebensstil vertraut geworden")
print(text.entities)

.. parsed-literal::

[I-LOC([u'Gro\\xdfbritannien']), I-PER([u'Gandhi'])]

Polarity
~~~~~~~~

.. code:: python

print("{:<16}{}".format("Word", "Polarity")+"\n"+"-"*30)
for w in zen.words[:6]:
print("{:<16}{:>2}".format(w, w.polarity))

.. parsed-literal::

Word Polarity
------------------------------
Beautiful 0
is 0
better 1
than 0
ugly -1
. 0

Embeddings
~~~~~~~~~~

.. code:: python

word = Word("Obama", language="en")
print("Neighbors (Synonms) of {}".format(word)+"\n"+"-"*30)
for w in word.neighbors:
print("{:<16}".format(w))
print("\n\nThe first 10 dimensions out the {} dimensions\n".format(word.vector.shape[0]))
print(word.vector[:10])

.. parsed-literal::

Neighbors (Synonms) of Obama
------------------------------
Bush
Reagan
Clinton
Ahmadinejad
Nixon
Karzai
McCain
Biden
Huckabee
Lula


The first 10 dimensions out the 256 dimensions

[-2.57382345 1.52175975 0.51070285 1.08678675 -0.74386948 -1.18616164
2.92784619 -0.25694436 -1.40958667 -2.39675403]

Morphology
~~~~~~~~~~

.. code:: python

word = Text("Preprocessing is an essential step.").words[0]
print(word.morphemes)

.. parsed-literal::

[u'Pre', u'process', u'ing']

Transliteration
~~~~~~~~~~~~~~~

.. code:: python

from polyglot.transliteration import Transliterator
transliterator = Transliterator(source_lang="en", target_lang="ru")
print(transliterator.transliterate(u"preprocessing"))

.. parsed-literal::

препрокессинг