Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aboutlo/async-memo-ize
🛠Memoize utility for async/await syntax and promises. It supports cache in memory or via Redis
https://github.com/aboutlo/async-memo-ize
cache javascript js memoization performance redis
Last synced: about 2 months ago
JSON representation
🛠Memoize utility for async/await syntax and promises. It supports cache in memory or via Redis
- Host: GitHub
- URL: https://github.com/aboutlo/async-memo-ize
- Owner: aboutlo
- License: mit
- Created: 2017-07-15T14:19:16.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2023-01-12T09:52:42.000Z (almost 2 years ago)
- Last Synced: 2024-04-15T08:08:46.900Z (9 months ago)
- Topics: cache, javascript, js, memoization, performance, redis
- Language: JavaScript
- Homepage:
- Size: 1.18 MB
- Stars: 16
- Watchers: 4
- Forks: 2
- Open Issues: 38
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Async Memo-ize
[![npm version](https://badge.fury.io/js/async-memo-ize.svg)](https://badge.fury.io/js/async-memo-ize) [![CircleCI](https://circleci.com/gh/aboutlo/async-memo-ize/tree/master.svg?style=shield)](https://circleci.com/gh/aboutlo/async-memo-ize/tree/master) [![Greenkeeper badge](https://badges.greenkeeper.io/aboutlo/async-memo-ize.svg)](https://greenkeeper.io/)> In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again
> — WikipediaThis library makes async function, aka Promises, first class citizen with memoization
Use cases covered:
1) An expensive function call (eg. API calls, intensive CPU calculations, etc)
2) Simultaneous multiple calls are handled by a queue so that the expensive function is invoked once.
3) Multiple NodeJs instances with a centralized cache (eg. Redis)**Notice:** sync function can be used too
### Real project use case
A NodeJS cluster computes a calculation every day for each user.
The calculation is incremental using the data from the last 90 days.
With this approach, the calculus can be distributed across all the available nodes, and the results are shared among them via a distributed cache (e.g. Redis)
So that, it isn't necessary crunching data from the previous days again and again.
## Installnpm install async-memo-ize
or
yarn add async-memo-ize
## Usage
Named functions
```js
import memoize from 'async-memo-ize'
import sleep from 'sleep-promise';const whatsTheAnswerToLifeTheUniverseAndEverything = async () => {
await sleep(2000);
return 42
}
const memoized = memoize(whatsTheAnswerToLifeTheUniverseAndEverything)const answer = await memoized() // wait 2 seconds
const quickAnswer = await memoized() // wait ms
```Anonymous functions
```js
import memoize from 'async-memo-ize'
import sleep from 'sleep-promise';const whatsTheAnswerToLifeTheUniverseAndEverything = memoize(async () => {
await sleep(2000);
return 42
}, {id: 'whatsTheAnswerToLifeTheUniverseAndEverything'})const answer = await whatsTheAnswerToLifeTheUniverseAndEverything() // wait 2 seconds
const quickAnswer = await whatsTheAnswerToLifeTheUniverseAndEverything() // wait ms
```If you prefer to memoize anonymous function, you have to pass a unique `id`.
The `id` is used to generate the cache `key` and it is required to share the same cache across multiple memoized functions.
Named functions don't need because the lib rely on `fn.name` as `id`## Cache
### In Memory
An async cache based on [LRUMap](https://github.com/rsms/js-lru) is provided.
#### Usage
```js
import memoize, {LocalCache} from 'async-memo-ize'const fn = async () => Promise.resolve(42)
const memoized = memoize(fn, new LocalCache)const answer = await memoized() // wait ms
```You can provide your own implementation given the below interface:
```
class LocalCache {async has(key) {
...
}async get(key) {
...
}async set(key, value) {
...
}async del(key) {
...
}async entries() {
...
}async size() {
...
}
}
```### Redis
If you want delegate and share the cache between NodeJs instances you can use RedisCache.yarn install async-memo-ize-plugin-redis-cache
#### Usage
```js
import memoize from 'async-memo-ize'
import RedisCache from 'async-memo-ize-plugin-redis-cache'const fn = async () => 42
const memoized = memoize(fn, new RedisCache())const anser = await memoized()
```
**Notice**
The `key` name, serialized on Redis, is based on the named function args and his name.Given:
```
const doSomething = async (a, b) => a+b```
The key generated:```
["doSomething",1,5]
```It means multiple NodeJs instances can share the value computed if the function name and the args match.
If you prefer to use an anonymous function it is required to pass an `id` as option## Test
### Prerequisites
docker run -d -p 6379:6379 redis:alpine
### Run
yarn test
## Release
lerna publish
## TODO
- Calculate at runtime a safe default for SimpleCache max
- Decide if or not to implement .entries() and .size on RedisCache
- Evaluate to create an ES5 compatible versionReminder for SimpleCache max
-max_old_space_size
echo console.log(process.argv.splice(2)) > index.js
node index.js --max_old_space_size -expose_gc