Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/absaoss/enceladus

Dynamic Conformance Engine
https://github.com/absaoss/enceladus

bigdata datalake hadoop mongodb scala spark spring

Last synced: about 2 hours ago
JSON representation

Dynamic Conformance Engine

Awesome Lists containing this project

README

        

Copyright 2018 ABSA Group Limited

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

# Enceladus

### Latest Release
[![Maven Central](https://maven-badges.herokuapp.com/maven-central/za.co.absa.enceladus/parent/badge.png)](https://maven-badges.herokuapp.com/maven-central/za.co.absa.enceladus/parent/)

### Build Status
| master | develop |
| ------------- | ------------- |
| [![Build Status](https://opensource.bigusdatus.com/jenkins/buildStatus/icon?job=Absa-OSS-Projects%2Fenceladus%2Fmaster)](https://opensource.bigusdatus.com/jenkins/job/Absa-OSS-Projects/job/enceladus/job/master/) | [![Build Status](https://opensource.bigusdatus.com/jenkins/buildStatus/icon?job=Absa-OSS-Projects%2Fenceladus%2Fdevelop)](https://opensource.bigusdatus.com/jenkins/job/Absa-OSS-Projects/job/enceladus/job/develop/) |
### Code Quality Status
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=AbsaOSS_enceladus&metric=alert_status)](https://sonarcloud.io/dashboard?id=AbsaOSS_enceladus)

### Documentation
[![Read the Docs](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://absaoss.github.io/enceladus/)
[![Read the Docs](https://img.shields.io/badge/docs-release%20notes-yellow.svg)](https://absaoss.github.io/enceladus/blog/)
[![Read the Docs](https://img.shields.io/badge/docs-release--1.x-red.svg)](https://absaoss.github.io/enceladus/docs/1.0.0/components)
___

- [What is Enceladus?](#what-is-enceladus)
- [REST API](#rest-api)
- [Menas](#menas)
- [Standardization](#standardization)
- [Conformance](#conformance)
- [How to build](#how-to-build)
- [How to run](#how-to-run)
- [Plugins](#plugins)
- [Built-in Plugins](#built-in-plugins)
- [How to contribute](#how-to-contribute)

## What is Enceladus?
**Enceladus** is a **Dynamic Conformance Engine** which allows data from different formats to be standardized to parquet and conformed to group-accepted common reference (e.g. data for country designation which are `DE` in one source system and `Deutschland` in another, can be conformed to `Germany`).

The project consists of four main components:

### REST API
The REST API exposes the Enceladus endpoints for creating, reading, updating and deleting the models, as well as other functionalities.
The main models used are:
- **Runs**: Although not able to be defined by users, Runs provide important overview of _Standardization_ & _Conformance_ jobs that have been carried out.
- **Schemas**: Specifies the schema towards which the dataset will be standardized
- **Datasets**: Specifies where the dataset will be read from on HDFS (**RAW**), the conformance rules that will be applied to it, and where it will land on HDFS once it is conformed (**PUBLISH**)
- **Mapping Tables**: Specifies where tables with master reference data can be found (parquet on HDFS), which are used when applying Mapping conformance rules (e.g. the dataset uses `Germany`, which maps to the master reference `DE` in the mapping table)
- **Dataset Property Definitions**: Datasets may be accompanied by properties, but these are not free-form - they are bound by system-wide property definitions.

The REST API exposes a Swagger Documentation UI which documents HTTP exposed endpoints.
It can be found at `REST_API_HOST/swagger-ui.html`
In order to switch between latest and all (latest + legacy) endpoints, use the UI definition selector (right up corner in Swagger).

### Menas
This is the user-facing web client, used to **specify the standardization schema**, and **define the steps required to conform** a dataset.
The Menas web client calls and is based on the REST API to get the needed entities.

### Standardization
This is a Spark job which reads an input dataset in any of the supported formats and **produces a parquet dataset with the Menas-specified schema** as output.

### Conformance
This is a Spark job which **applies the Menas-specified conformance rules to the standardized dataset**.

### Standardization and Conformance
This is a Spark job which executes both Standardization and Conformance together in the same job

## How to build
#### Build requirements:
- **Maven 3.5.4+**
- **Java 8**

Each module provides configuration file templates with reasonable default values.
Make a copy of the `*.properties.template` and `*.conf.template` files in each module's `src/resources` directory removing the `.template` extension.
Ensure the properties there fit your environment.

#### Build commands:

- Without tests: `mvn clean package -Dskip.unit.tests`
- With unit tests: `mvn clean package`
- With integration tests: `mvn clean package -Pintegration`

#### Test coverage:
- Test coverage: `mvn clean verify -Pcode-coverage`

The coverage reports are written in each module's `target` directory.

## How to run
#### REST API requirements:
- [**Tomcat 8.5/9.0** installation](https://tomcat.apache.org/download-90.cgi)
- [**MongoDB 4.0** installation](https://docs.mongodb.com/manual/administration/install-community/)
- `HADOOP_CONF_DIR` environment variable, pointing to the location of your hadoop configuration (pointing to a hadoop installation)

#### Deploying REST API
Simply copy the `rest-api.war` file produced when building the project into Tomcat's webapps directory.
Another possible method is building the Docker image based on the existing Dockerfile and deploying it as a container.

#### Deploying Menas
There are several ways of deploying Menas:
- Tomcat deployment: copy the `menas.war` file produced when building the project into Tomcat's webapps directory. The `"apiUrl"` value in `package.json` should be set either before building or after building the artifact and modifying it in place
- Docker deployment: build the Docker image based on the existing Dockerfile and deploy it as a container. The `API_URL` environment variable should be provided when running the container
- CDN deployment: copy the built contents in the `dist` directory into your preferred CDN server. The `"apiUrl"` value in `package.json` in the `dist` directory should be set

#### Speed up initial loading time of REST API
- Enable the HTTP compression
- Configure `spring.resources.cache.cachecontrol.max-age` in `application.properties` of REST API for caching of static resources

#### Standardization and Conformance requirements:
- [**Spark 2.4.4 (Scala 2.11)** installation](https://spark.apache.org/downloads.html)
- [**Hadoop 2.7** installation](https://hadoop.apache.org/releases.html)
- **REST API** running instance
- **REST API Credentials File** in your home directory or on HDFS (a configuration file for authenticating the Spark jobs with Menas)
- **Use with in-memory authentication**
e.g. `~/rest-api-credential.properties`:
```
username=user
password=changeme
```
- **REST API Keytab File** in your home directory or on HDFS
- **Use with kerberos authentication**, see [link](https://kb.iu.edu/d/aumh) for details on creating keytab files
- **Directory structure** for the **RAW** dataset should follow the convention of `////v`. This date is specified with the `--report-date` option when running the **Standardization** and **Conformance** jobs.
- **_INFO file** must be present along with the **RAW** data on HDFS as per the above directory structure. This is a file tracking control measures via [Atum](https://github.com/AbsaOSS/atum), an example can be found [here](examples/data/input/_INFO).

#### Running Standardization
```
/spark-submit \
--num-executors \
--executor-memory G \
--master yarn \
--deploy-mode \
--driver-cores \
--driver-memory G \
--conf "spark.driver.extraJavaOptions=-Denceladus.rest.uri= -Dstandardized.hdfs.path=-{0}-{1}-{2}-{3} -Dhdp.version=" \
--class za.co.absa.enceladus.standardization.StandardizationJob \
.jar> \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version \
--raw-format \
--row-tag
```
* Here `row-tag` is a specific option for `raw-format` of type `XML`. For more options for different types please see our WIKI.
* In case REST API is configured for in-memory authentication (e.g. in dev environments), replace `--rest-api-auth-keytab` with `--rest-api-credentials-file`

#### Running Conformance
```
/spark-submit \
--num-executors \
--executor-memory G \
--master yarn \
--deploy-mode \
--driver-cores \
--driver-memory G \
--conf 'spark.ui.port=29000' \
--conf "spark.driver.extraJavaOptions=-Denceladus.rest.uri= -Dstandardized.hdfs.path=-{0}-{1}-{2}-{3} -Dconformance.mappingtable.pattern=reportDate={0}-{1}-{2} -Dhdp.version=" \
--packages za.co.absa:enceladus-parent:,za.co.absa:enceladus-conformance: \
--class za.co.absa.enceladus.conformance.DynamicConformanceJob \
.jar> \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version
```

#### Running Standardization and Conformance together
```
/spark-submit \
--num-executors \
--executor-memory G \
--master yarn \
--deploy-mode \
--driver-cores \
--driver-memory G \
--conf "spark.driver.extraJavaOptions=-Denceladus.rest.uri= -Dstandardized.hdfs.path=-{0}-{1}-{2}-{3} -Dhdp.version=" \
--class za.co.absa.enceladus.standardization_conformance.StandardizationAndConformanceJob \
.jar> \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version \
--raw-format \
--row-tag
```

* In case REST API is configured for in-memory authentication (e.g. in dev environments), replace `--rest-api-auth-keytab` with `--rest-api-credentials-file`

#### Helper scripts for running Standardization, Conformance or both together

The Scripts in `scripts` folder can be used to simplify command lines for running Standardization and Conformance jobs.

Steps to configure the scripts are as follows (_Linux_):
* Copy all the scripts in `scripts/bash` directory to a location in your environment.
* Copy `enceladus_env.template.sh` to `enceladus_env.sh`.
* Change `enceladus_env.sh` according to your environment settings.
* Use `run_standardization.sh` and `run_conformance.sh` scripts instead of directly invoking `spark-submit` to run your jobs.

Similar scripts exist for _Windows_ in directory `scripts/cmd`.

The syntax for running Standardization and Conformance is similar to running them using `spark-submit`. The only difference is that
you don't have to provide environment-specific settings. Several resource options, like driver memory and driver cores also have
default values and can be omitted. The number of executors is still a mandatory parameter.

The basic command to run Standardization becomes:
```
/run_standardization.sh \
--num-executors \
--deploy-mode \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version \
--raw-format \
--row-tag
```

The basic command to run Conformance becomes:
```
/run_conformance.sh \
--num-executors \
--deploy-mode \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version
```

The basic command to run Standardization and Conformance combined becomes:
```
/run_standardization_conformance.sh \
--num-executors \
--deploy-mode \
--rest-api-auth-keytab \
--dataset-name \
--dataset-version \
--report-date \
--report-version \
--raw-format \
--row-tag
```

Similarly for Windows:
```
/run_standardization.cmd ^
--num-executors ^
--deploy-mode ^
--rest-api-auth-keytab ^
--dataset-name ^
--dataset-version ^
--report-date ^
--report-version ^
--raw-format ^
--row-tag
```
Etc...

The list of options for configuring Spark deployment mode in Yarn and resource specification:

| Option | Description |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| --deploy-mode **cluster/client** | Specifies a Spark Application deployment mode when Spark runs on Yarn. Can be either `client` or `cluster`. |
| --num-executors **n** | Specifies the number of executors to use. |
| --executor-memory **mem** | Specifies an amount of memory to request for each executor. See memory specification syntax in Spark. Examples: `4g`, `8g`. |
| --executor-cores **mem** | Specifies a number of cores to request for each executor (default=1). |
| --driver-cores **n** | Specifies a number of CPU cores to allocate for the driver process. |
| --driver-memory **mem** | Specifies an amount of memory to request for the driver process. See memory specification syntax in Spark. Examples: `4g`, `8g`. |
| --persist-storage-level **level** | **Advanced** Specifies the storage level to use for persisting intermediate results. Can be one of `NONE`, `DISK_ONLY`, `MEMORY_ONLY`, `MEMORY_ONLY_SER`, `MEMORY_AND_DISK` (default), `MEMORY_AND_DISK_SER`, etc. See more [here](https://spark.apache.org/docs/2.4.4/api/java/index.html?org/apache/spark/storage/StorageLevel.html). |
| --conf-spark-executor-memoryOverhead **mem** | **Advanced**. The amount of off-heap memory to be allocated per executor, in MiB unless otherwise specified. Sets `spark.executor.memoryOverhead` Spark configuration parameter. See the detailed description [here](http://spark.apache.org/docs/latest/configuration.html#available-properties). See memory specification syntax in Spark. Examples: `4g`, `8g`. |
| --conf-spark-memory-fraction **value** | **Advanced**. Fraction of (heap space - 300MB) used for execution and storage (default=`0.6`). Sets `spark.memory.fraction` Spark configuration parameter. See the detailed description [here](http://spark.apache.org/docs/latest/configuration.html#memory-management). |

For more information on these options see the official documentation on running Spark on Yarn:
[https://spark.apache.org/docs/latest/running-on-yarn.html](https://spark.apache.org/docs/latest/running-on-yarn.html)

The list of all options for running Standardization, Conformance and the combined Standardization And Conformance jobs:

| Option | Description |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| --rest-api-auth-keytab **filename** | A keytab file used for Kerberized authentication to REST API. Cannot be used together with `--rest-api-credentials-file`. |
| --rest-api-credentials-file **filename** | A credentials file containing a login and a password used to authenticate to REST API. Cannot be used together with `--rest-api-auth-keytab`. |
| --dataset-name **name** | A dataset name to be standardized or conformed. |
| --dataset-version **version** | A version of a dataset to be standardized or conformed. |
| --report-date **YYYY-mm-dd** | A date specifying a day for which a raw data is landed. |
| --report-version **version** | A version of the data for a particular day. |
| --std-hdfs-path **path** | A path pattern where to put standardized data. The following tokens are expending in the pattern: `{0}` - dataset name, `{1}` - dataset version, `{2}`- report date, `{3}`- report version. |

The list of additional options available for running Standardization:

| Option | Description |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| --raw-format **format** | A format for input data. Can be one of `parquet`, `json`, `csv`, `xml`, `cobol`, `fixed-width`. |
| --charset **charset** | Specifies a charset to use for `csv`, `json` or `xml`. Default is `UTF-8`. |
| --cobol-encoding **encoding** | Specifies the encoding of a mainframe file (`ascii` or `ebcdic`). Code page can be specified using `--charset` option. |
| --cobol-is-text **true/false** | Specifies if the mainframe file is ASCII text file |
| --cobol-trimming-policy **policy** | Specifies the way leading and trailing spaces should be handled. Can be `none` (do not trim spaces), `left`, `right`, `both`(default). |
| --copybook **string** | Path to a copybook for COBOL data format |
| --csv-escape **character** | Specifies a character to be used for escaping other characters. By default '\' (backslash) is used. * |
| --csv-quote **character** | Specifies a character to be used as a quote for creating fields that might contain delimiter character. By default `"` is used. * |
| --debug-set-raw-path **path** | Override the path of the raw data (used for testing purposes). |
| --delimiter **character** | Specifies a delimiter character to use for CSV format. By default `,` is used. * |
| --empty-values-as-nulls **true/false** | If `true` treats empty values as `null`s |
| --folder-prefix **prefix** | Adds a folder prefix before the date tokens. |
| --header **true/false** | Indicates if in the input CSV data has headers as the first row of each file. |
| --is-xcom **true/false** | If `true` a mainframe input file is expected to have XCOM RDW headers. |
| --null-value **string** | Defines how null values are represented in a `csv` and `fixed-width` file formats |
| --row-tag **tag** | A row tag if the input format is `xml`. |
| --strict-schema-check **true/false** | If `true` processing ends the moment a row not adhering to the schema is encountered, `false` (default) proceeds over it with an entry in _errCol_ |
| --trimValues **true/false** | Indicates if string fields of fixed with text data should be trimmed. |

Most of these options are format specific. For details see [the documentation](https://absaoss.github.io/enceladus/docs/usage/standardization-formats).

* Can also be specified as a unicode value in the following ways: U+00A1, u00a1 or just the code 00A1. In case empty string option needs to be applied, the keyword none can be used.

The list of additional options available for running Conformance:

| Option | Description |
|--------------------------------------------|------------------------------------------------------------------------------|
| --mapping-table-pattern **pattern** | A pattern to look for mapping table for the specified date.
The list of possible substitutions: `{0}` - year, `{1}` - month, `{2}` - day of month. By default the pattern is `reportDate={0}-{1}-{2}`. Special symbols in the pattern need to be escaped. For example, an empty pattern can be be specified as `\'\'` (single quotes are escaped using a backslash character).|
| --experimental-mapping-rule **true/false** | If `true`, the experimental optimized mapping rule implementation is used. The default value is build-specific and is set in 'application.properties'. |
| --catalyst-workaround **true/false** | Turns on (`true`) or off (`false`) workaround for Catalyst optimizer issue. It is `true` by default. Turn this off only is you encounter timing freeze issues when running Conformance. |
| --autoclean-std-folder **true/false** | If `true`, the standardized folder will be cleaned automatically after successful execution of a Conformance job. |

All the additional options valid for both Standardization and Conformance can also be specified when running the combined StandardizationAndConformance job

## How to measure code coverage
```shell
./mvn clean verify -Pcode-coverage
```
If module contains measurable data the code coverage report will be generated on path:
```
{local-path}\enceladus\{module}\target\jacoco
```

## Plugins

Standardization and Conformance support plugins that allow executing additional actions at certain times of the computation.
To learn how plugins work, when and how their logic is executed, please
refer to the [documentation](https://absaoss.github.io/enceladus/docs/plugins).

### Built-in Plugins

The purpose of this module is to provide some plugins of additional but relatively elementary functionality. And also to
serve as an example how plugins are written:
[detailed description](https://absaoss.github.io/enceladus/docs/plugins-built-in)

## Examples

A module containing [examples](examples/README.md) of the project usage.

## How to contribute
Please see our [**Contribution Guidelines**](CONTRIBUTING.md).

# Extras
- For Menas migration, there is a useful script available in
[scripts/migration/migrate_menas.py](scripts/migration/migrate_menas.py)
(`dependencies.txt` provided, to install missing ones, run `pip install -r scripts/migration/requirements.txt`)