An open API service indexing awesome lists of open source software.

https://github.com/acclab/dabestr

Data Analysis with Bootstrap Estimation in R
https://github.com/acclab/dabestr

data-analysis data-visualization estimation r statistics

Last synced: 5 days ago
JSON representation

Data Analysis with Bootstrap Estimation in R

Awesome Lists containing this project

README

          

---
output: github_document
---

```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
```

# dabestr

[![minimal R version](https://img.shields.io/badge/R%3E%3D-2.10-6666ff.svg)](https://cran.r-project.org/) [![CRAN Download Count](https://cranlogs.r-pkg.org/badges/grand-total/dabestr?color=brightgreen)](https://cran.r-project.org/package=dabestr) [![Free-to-view citation](https://zenodo.org/badge/DOI/10.1038/s41592-019-0470-3.svg)](https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D) [![License](https://img.shields.io/badge/License-Apache_2.0-orange.svg)](https://spdx.org/licenses/BSD-3-Clause-Clear.html)
[![R-CMD-check](https://github.com/sunroofgod/dabestr-prototype/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/sunroofgod/dabestr-prototype/actions/workflows/R-CMD-check.yaml)

dabestr is a package for **D**ata **A**nalysis using **B**ootstrap-Coupled **EST**imation.

[Estimation statistics](https://en.wikipedia.org/wiki/Estimation_statistics "Estimation Stats on Wikipedia") is a [simple framework](https://thenewstatistics.com/itns/ "Introduction to the New Statistics") that avoids the [pitfalls](https://www.nature.com/articles/nmeth.3288 "The fickle P value generates irreproducible results, Halsey et al 2015") of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by *P* values.

An estimation plot has two key features.

1. It **presents all datapoints** as a swarmplot, which orders each point to display the underlying distribution.

2. It presents the **effect size** as a **bootstrap 95% confidence interval** on a **separate but aligned axes**.

The `dabestr` package powers [estimationstats.com](http://estimationstats.com), allowing everyone access to high-quality estimation plots.

## Installation

```{r, eval = FALSE}
# Install it from CRAN
install.packages("dabestr")

# Or the development version from GitHub:
# install.packages("devtools")
devtools::install_github(repo = "ACCLAB/dabestr", ref = "dev")
```

## Usage

```{r, warning = FALSE, message = FALSE, eval = FALSE}
library(dabestr)
```

```{r, include = FALSE}
devtools::load_all(".")
```

```{r, dpi = 500, warning = FALSE}
data("non_proportional_data")

dabest_obj.mean_diff <- load(
data = non_proportional_data,
x = Group,
y = Measurement,
idx = c("Control 1", "Test 1")
) %>%
mean_diff()

dabest_plot(dabest_obj.mean_diff, TRUE)
```

Please refer to the official [tutorial](https://acclab.github.io/dabestr/articles/tutorial_basics.html) for more useful code snippets.

## Citation

**Moving beyond P values: Everyday data analysis with estimation plots**

*Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang*

Nature Methods 2019, 1548-7105. [10.1038/s41592-019-0470-3](http://dx.doi.org/10.1038/s41592-019-0470-3)

[Paywalled publisher site](https://www.nature.com/articles/s41592-019-0470-3); [Free-to-view PDF](https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D)

## Contributing

Please report any bugs on the [Github issue tracker](https://github.com/ACCLAB/dabestr/issues/new).

All contributions are welcome; please read the [Guidelines for contributing](https://github.com/ACCLAB/dabestr/blob/master/CONTRIBUTING.md) first.

We also have a [Code of Conduct](https://github.com/ACCLAB/dabestr/blob/master/CODE_OF_CONDUCT.md) to foster an inclusive and productive space.

## Acknowledgements

We would like to thank alpha testers from the [Claridge-Chang lab](https://www.claridgechang.net/): [Sangyu Xu](https://github.com/sangyu), [Xianyuan Zhang](https://github.com/XYZfar), [Farhan Mohammad](https://github.com/farhan8igib), Jurga Mituzaitė, and Stanislav Ott.

## DABEST in other languages

DABEST is also available in Python ([DABEST-python](https://github.com/ACCLAB/DABEST-python "DABEST-Python on Github")) and Matlab
([DABEST-Matlab](https://github.com/ACCLAB/DABEST-Matlab "DABEST-Matlab on Github")).