Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/acecoooool/paper-zh
daily paper reading
https://github.com/acecoooool/paper-zh
paper zh-cn
Last synced: about 2 months ago
JSON representation
daily paper reading
- Host: GitHub
- URL: https://github.com/acecoooool/paper-zh
- Owner: AceCoooool
- Created: 2018-01-02T14:32:49.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-19T14:22:46.000Z (almost 7 years ago)
- Last Synced: 2023-10-19T22:54:30.087Z (about 1 year ago)
- Topics: paper, zh-cn
- Size: 8.78 MB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Paper-zh
个人所读论文的记录,里面肯定包含错误的理解,欢迎指出,感谢指出。下述的(*推荐)代表推荐此论文,并不是指写的总结
### 20180102
1. [Learning Deep Features for Discriminative Localization](https://arxiv.org/abs/1512.04150)
2. [Unsupervised Image-to-Image Translation Networks](https://arxiv.org/abs/1703.00848)### 20180103
1. [Holistically-Nested Edge Detection](https://arxiv.org/abs/1504.06375)
2. [Deeply supervised salient object detection with short connections](https://arxiv.org/abs/1611.04849)
3. [Richer Convolutional Features for Edge Detection](https://arxiv.org/abs/1612.02103)### 20180104
1. [The Devil is in the Decoder](https://arxiv.org/abs/1707.05847v2) (*推荐)
2. [Instance-Level Salient Object Segmentation](https://arxiv.org/abs/1704.03604)### 20180105
1. ["Zero-Shot" Super-Resolution using Deep Internal Learning](https://arxiv.org/abs/1712.06087) (*推荐)
2. [Panoptic Segmentation](https://arxiv.org/abs/1801.00868) (*推荐)### 20180106
1. [Non-Local Deep Features for Salient Object Detection](http://openaccess.thecvf.com/content_cvpr_2017/papers/Luo_Non-Local_Deep_Features_CVPR_2017_paper.pdf)
2. [Learning to Detect Salient Objects with Image-level Supervision](http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_Learning_to_Detect_CVPR_2017_paper.pdf) (*推荐)+.+:20180107和20180108打酱油去了....
### 20180109
1. [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038)
2. [Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs](https://arxiv.org/abs/1412.7062)) (似乎同一篇,但更详细的版本:[DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs](https://arxiv.org/pdf/1606.00915.pdf))
3. [Attention to Scale: Scale-aware Semantic Image Segmentation](https://arxiv.org/abs/1511.03339)### 20180110
1. [Semantic Image Segmentation via Deep Parsing Network](https://arxiv.org/abs/1509.02634) (*推荐)
2. [Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs](https://arxiv.org/abs/1603.08358)
3. [Deep, Dense, and Low-Rank Gaussian Conditional Random Fields](https://arxiv.org/abs/1611.09051)### 20180111
1. [Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105)
2. [Semantic Segmentation with Reverse Attention](https://arxiv.org/abs/1707.06426) (*推荐)+.+:201801012和20180113又打酱油去了....(泪崩)
### 20180114
1. [Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach](https://arxiv.org/abs/1703.08448)
2. [Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection](https://arxiv.org/abs/1708.02001)### 20180116
1. [Dilated Residual Networks](https://arxiv.org/abs/1705.09914) & [Multi-Scale Context Aggregation by Dilated Convolutions](https://arxiv.org/abs/1511.07122)
2. [Learning Affinity via Spatial Propagation Networks](https://arxiv.org/abs/1710.01020) (*推荐)### 20180117
1. [Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes](https://arxiv.org/abs/1611.08323)
2. [Deep Level Sets for Salient Object Detection](http://openaccess.thecvf.com/content_cvpr_2017/papers/Hu_Deep_Level_Sets_CVPR_2017_paper.pdf)### 20180118
1. [Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade](https://arxiv.org/abs/1704.01344)
### 20190119
1. [Soft Proposal Networks for Weakly Supervised Object Localization](https://arxiv.org/abs/1709.01829)
s