An open API service indexing awesome lists of open source software.

https://github.com/activeloopai/examples

Examples for quickly getting started using Deep Lake! https://activeloop.ai/
https://github.com/activeloopai/examples

deeplake

Last synced: 6 months ago
JSON representation

Examples for quickly getting started using Deep Lake! https://activeloop.ai/

Awesome Lists containing this project

README

          

[Deprecated] while some tutorials work, they are outdated, would really appreciate contributions to update examples to Deep Lake.




Examples for Deep Lake - Dataset Format for AI

A repository showcasing examples of using [Deep Lake](https://github.com/activeloopai/deeplake)
- [Uploading Dataset Places365](places365/upload.py)
- [Notebook on uploading COCO](coco/upload_coco.ipynb)
- [Training a model using Pytorch Lightning](pytorch-lightning/mnist.py)
- [Augmentation using Albumentations](albumentations/augment.py)
- [Run Deep Lake on MinIO (local S3)](minio)
- [Computer Vision Transformation pipeline on Cifar](transforming)

### Colab Tutorials

| Notebook | Link |
|-------------|------|
| Getting Started with Deep Lake | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Getting_Started_with_Hub.ipynb) |
| Creating Object Detection Datasets | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Object_Detection_Datasets.ipynb) |
| Creating Complex Detection Datasets | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Complex_Datasets.ipynb) |
| Data Processing Using Parallel Computing | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/istranic-adding-colabs/colabs/Data_Processing_Using_Parallel_Computing.ipynb) |
| Training an Image Classification Model in PyTorch | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Training_an_Image_Classification_Model_in_PyTorch.ipynb) |
| Creating Time-Series Datasets | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Time_Series_Datasets.ipynb) |

Machine Learning teams can apply Activeloop's data infrastructure to ship their models fast in the following use cases:

1. [AgriTech](https://www.activeloop.ai/solutions/agriculture/)
2. [Audio processing](https://www.activeloop.ai/solutions/audio/)
3. [Autonomous Vehicles & Robotics](https://www.activeloop.ai/solutions/autonomous-vehicles-robotics/)
4. [Biomedical and Healthcare ML](https://www.activeloop.ai/solutions/biomedical-healthcare/)
5. Multimedia: [Image enhancement, video enhancement, face detection, sports analytics, or machine learning for AR/VR](https://www.activeloop.ai/solutions/multimedia/)
6. Safety & Security: [surveillance machine learning with biometrics, facial recognition, or crowd counting](https://www.activeloop.ai/solutions/safety-security/)

## Documentation
Getting started guides, examples, tutorials, API reference, and other usage information can be found on our [documentation page](http://docs.activeloop.ai/?utm_source=github&utm_medium=repo&utm_campaign=readme).