https://github.com/activeloopai/examples
Examples for quickly getting started using Deep Lake! https://activeloop.ai/
https://github.com/activeloopai/examples
deeplake
Last synced: 6 months ago
JSON representation
Examples for quickly getting started using Deep Lake! https://activeloop.ai/
- Host: GitHub
- URL: https://github.com/activeloopai/examples
- Owner: activeloopai
- License: apache-2.0
- Created: 2021-09-22T22:09:56.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-09-04T13:56:38.000Z (about 1 year ago)
- Last Synced: 2024-09-05T17:38:30.367Z (about 1 year ago)
- Topics: deeplake
- Language: Jupyter Notebook
- Homepage: https://docs.activeloop.ai/
- Size: 12.2 MB
- Stars: 23
- Watchers: 4
- Forks: 15
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[Deprecated] while some tutorials work, they are outdated, would really appreciate contributions to update examples to Deep Lake.
![]()
Examples for Deep Lake - Dataset Format for AI
A repository showcasing examples of using [Deep Lake](https://github.com/activeloopai/deeplake)
- [Uploading Dataset Places365](places365/upload.py)
- [Notebook on uploading COCO](coco/upload_coco.ipynb)
- [Training a model using Pytorch Lightning](pytorch-lightning/mnist.py)
- [Augmentation using Albumentations](albumentations/augment.py)
- [Run Deep Lake on MinIO (local S3)](minio)
- [Computer Vision Transformation pipeline on Cifar](transforming)
### Colab Tutorials| Notebook | Link |
|-------------|------|
| Getting Started with Deep Lake | [](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Getting_Started_with_Hub.ipynb) |
| Creating Object Detection Datasets | [](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Object_Detection_Datasets.ipynb) |
| Creating Complex Detection Datasets | [](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Complex_Datasets.ipynb) |
| Data Processing Using Parallel Computing | [](https://colab.research.google.com/github/activeloopai/examples/blob/istranic-adding-colabs/colabs/Data_Processing_Using_Parallel_Computing.ipynb) |
| Training an Image Classification Model in PyTorch | [](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Training_an_Image_Classification_Model_in_PyTorch.ipynb) |
| Creating Time-Series Datasets | [](https://colab.research.google.com/github/activeloopai/examples/blob/main/colabs/Creating_Time_Series_Datasets.ipynb) |Machine Learning teams can apply Activeloop's data infrastructure to ship their models fast in the following use cases:
1. [AgriTech](https://www.activeloop.ai/solutions/agriculture/)
2. [Audio processing](https://www.activeloop.ai/solutions/audio/)
3. [Autonomous Vehicles & Robotics](https://www.activeloop.ai/solutions/autonomous-vehicles-robotics/)
4. [Biomedical and Healthcare ML](https://www.activeloop.ai/solutions/biomedical-healthcare/)
5. Multimedia: [Image enhancement, video enhancement, face detection, sports analytics, or machine learning for AR/VR](https://www.activeloop.ai/solutions/multimedia/)
6. Safety & Security: [surveillance machine learning with biometrics, facial recognition, or crowd counting](https://www.activeloop.ai/solutions/safety-security/)## Documentation
Getting started guides, examples, tutorials, API reference, and other usage information can be found on our [documentation page](http://docs.activeloop.ai/?utm_source=github&utm_medium=repo&utm_campaign=readme).