https://github.com/adamlaszlo91/winterveil
Add winter effect to images
https://github.com/adamlaszlo91/winterveil
image-manipulation midas opencv python
Last synced: 6 months ago
JSON representation
Add winter effect to images
- Host: GitHub
- URL: https://github.com/adamlaszlo91/winterveil
- Owner: adamlaszlo91
- License: unlicense
- Created: 2024-11-01T18:04:40.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-12-24T13:14:13.000Z (9 months ago)
- Last Synced: 2025-02-13T15:54:08.093Z (8 months ago)
- Topics: image-manipulation, midas, opencv, python
- Language: Python
- Homepage:
- Size: 6.42 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# winterveil
Add winter effect to images## Features
- Add fog
- Add showfall
- Add fallen snow## Example
| Input | Fog | Snow | Fallen snow |
| -------------------------------- | ---------------------------------- | ---------------------------------- | ----------------------------------- |
|  |  |  |  || Fog + Snow | Fog + Fallen snow | Fallen snow + Snow | Fog + Snow + Fallen snow |
| ------------------------------------ | ------------------------------------- | ------------------------------------- | --------------------------------------- |
|  |  |  |  |## Usage
### Install dependencies
```
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```### Winterize image
```
python3 main.py path_to_image
```## Options
```
usage: WinterVeil [-h] -i IMAGE [-f] [-s] [-ss SNOWFLAKE_SIZE] [-sc SNOWFLAKE_COUNT] [-fs]options:
-h, --help show this help message and exit
-i IMAGE, --image IMAGE
input image path
-f, --fog add fog to the image
-s, --snow add snow to the image
-ss SNOWFLAKE_SIZE, --snowflake-size SNOWFLAKE_SIZE
size of snowflakes in pixel
-sc SNOWFLAKE_COUNT, --snowflake-count SNOWFLAKE_COUNT
number of snowflakes on image (visibility depends on depth map!)
-fs, --fallen-snow add fallen snow to the image
```## Acknowledgments
This project uses the [MiDaS depth estimation model]([link-to-model-repository-or-paper](https://arxiv.org/abs/1907.01341)) by René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun, which is licensed under the MIT License. If you use this project, please also cite their original work:
```bibtex
@article{Ranftl2020,
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2020},
}
``````bibtex
@article{Ranftl2021,
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {ArXiv preprint},
year = {2021},
}
```