Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/adamlaszlo91/winterveil

WIP Add winter effect to images
https://github.com/adamlaszlo91/winterveil

image-manipulation midas opencv python

Last synced: 16 days ago
JSON representation

WIP Add winter effect to images

Awesome Lists containing this project

README

        

# winterveil
Add winter effect to images

## Features
- Add fog
- WIP Add showfall
- WIP Add fallen snow

## Example
| Input | Output |
| ---------------------------- | ---------------------------- |
| ![makise](images/makise.jpg) | ![output](images/output.png) |

## Usage
### Install dependencies
```
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```

### Winterize image
```
python3 main.py path_to_image
```

## Acknowledgments

This project uses the [MiDaS depth estimation model]([link-to-model-repository-or-paper](https://arxiv.org/abs/1907.01341)) by René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun, which is licensed under the MIT License. If you use this project, please also cite their original work:

```bibtex
@article{Ranftl2020,
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2020},
}
```

```bibtex
@article{Ranftl2021,
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {ArXiv preprint},
year = {2021},
}
```