Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/adamlaszlo91/winterveil
WIP Add winter effect to images
https://github.com/adamlaszlo91/winterveil
image-manipulation midas opencv python
Last synced: 16 days ago
JSON representation
WIP Add winter effect to images
- Host: GitHub
- URL: https://github.com/adamlaszlo91/winterveil
- Owner: adamlaszlo91
- License: unlicense
- Created: 2024-11-01T18:04:40.000Z (17 days ago)
- Default Branch: main
- Last Pushed: 2024-11-01T20:36:55.000Z (17 days ago)
- Last Synced: 2024-11-01T21:23:38.710Z (17 days ago)
- Topics: image-manipulation, midas, opencv, python
- Language: Python
- Homepage:
- Size: 0 Bytes
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# winterveil
Add winter effect to images## Features
- Add fog
- WIP Add showfall
- WIP Add fallen snow## Example
| Input | Output |
| ---------------------------- | ---------------------------- |
| ![makise](images/makise.jpg) | ![output](images/output.png) |## Usage
### Install dependencies
```
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```### Winterize image
```
python3 main.py path_to_image
```## Acknowledgments
This project uses the [MiDaS depth estimation model]([link-to-model-repository-or-paper](https://arxiv.org/abs/1907.01341)) by René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun, which is licensed under the MIT License. If you use this project, please also cite their original work:
```bibtex
@article{Ranftl2020,
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2020},
}
``````bibtex
@article{Ranftl2021,
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {ArXiv preprint},
year = {2021},
}
```