Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/adaptive-intelligent-robotics/QDax

Accelerated Quality-Diversity
https://github.com/adaptive-intelligent-robotics/QDax

framework jax neuroevolution quality-diversity reinforcement-learning research

Last synced: about 2 months ago
JSON representation

Accelerated Quality-Diversity

Awesome Lists containing this project

README

        


qdax_logo

# QDax: Accelerated Quality-Diversity

[![Documentation Status](https://readthedocs.org/projects/qdax/badge/?version=latest)](https://qdax.readthedocs.io/en/latest/?badge=latest)
![pytest](https://github.com/adaptive-intelligent-robotics/QDax/actions/workflows/ci.yaml/badge.svg?branch=main)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/adaptive-intelligent-robotics/QDax/blob/main/LICENSE)
[![codecov](https://codecov.io/gh/adaptive-intelligent-robotics/QDax/branch/feat/add-codecov/graph/badge.svg)](https://codecov.io/gh/adaptive-intelligent-robotics/QDax)

QDax is a tool to accelerate Quality-Diversity (QD) and neuro-evolution algorithms through hardware accelerators and massive parallelization. QD algorithms usually take days/weeks to run on large CPU clusters. With QDax, QD algorithms can now be run in minutes! ⏩ ⏩ 🕛

QDax has been developed as a research framework: it is flexible and easy to extend and build on and can be used for any problem setting. Get started with simple example and run a QD algorithm in minutes here! [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/mapelites.ipynb)

- QDax [paper](https://arxiv.org/abs/2202.01258)
- QDax [documentation](https://qdax.readthedocs.io/en/latest/)

## Installation
QDax is available on PyPI and can be installed with:
```bash
pip install qdax
```

To install QDax with CUDA 12 support, use:
```bash
pip install qdax[cuda12]
```

Alternatively, the latest commit of QDax can be installed directly from source with:
```bash
pip install git+https://github.com/adaptive-intelligent-robotics/QDax.git@main
```
Installing QDax via ```pip``` installs a CPU-only version of JAX by default. To use QDax with NVidia GPUs, you must first install [CUDA, CuDNN, and JAX with GPU support](https://github.com/google/jax#installation).

However, we also provide and recommend using either Docker or conda environments to use the repository which by default provides GPU support. Detailed steps to do so are available in the [documentation](https://qdax.readthedocs.io/en/latest/installation/).

## Basic API Usage
For a full and interactive example to see how QDax works, we recommend starting with the tutorial-style [Colab notebook](./examples/mapelites.ipynb). It is an example of the MAP-Elites algorithm used to evolve a population of controllers on a chosen Brax environment (Walker by default).

However, a summary of the main API usage is provided below:
```python
import jax
import functools
from qdax.core.map_elites import MAPElites
from qdax.core.containers.mapelites_repertoire import compute_euclidean_centroids
from qdax.tasks.arm import arm_scoring_function
from qdax.core.emitters.mutation_operators import isoline_variation
from qdax.core.emitters.standard_emitters import MixingEmitter
from qdax.utils.metrics import default_qd_metrics

seed = 42
num_param_dimensions = 100 # num DoF arm
init_batch_size = 100
batch_size = 1024
num_iterations = 50
grid_shape = (100, 100)
min_param = 0.0
max_param = 1.0
min_bd = 0.0
max_bd = 1.0

# Init a random key
random_key = jax.random.PRNGKey(seed)

# Init population of controllers
random_key, subkey = jax.random.split(random_key)
init_variables = jax.random.uniform(
subkey,
shape=(init_batch_size, num_param_dimensions),
minval=min_param,
maxval=max_param,
)

# Define emitter
variation_fn = functools.partial(
isoline_variation,
iso_sigma=0.05,
line_sigma=0.1,
minval=min_param,
maxval=max_param,
)
mixing_emitter = MixingEmitter(
mutation_fn=lambda x, y: (x, y),
variation_fn=variation_fn,
variation_percentage=1.0,
batch_size=batch_size,
)

# Define a metrics function
metrics_fn = functools.partial(
default_qd_metrics,
qd_offset=0.0,
)

# Instantiate MAP-Elites
map_elites = MAPElites(
scoring_function=arm_scoring_function,
emitter=mixing_emitter,
metrics_function=metrics_fn,
)

# Compute the centroids
centroids = compute_euclidean_centroids(
grid_shape=grid_shape,
minval=min_bd,
maxval=max_bd,
)

# Initializes repertoire and emitter state
repertoire, emitter_state, random_key = map_elites.init(init_variables, centroids, random_key)

# Run MAP-Elites loop
for i in range(num_iterations):
(repertoire, emitter_state, metrics, random_key,) = map_elites.update(
repertoire,
emitter_state,
random_key,
)

# Get contents of repertoire
repertoire.genotypes, repertoire.fitnesses, repertoire.descriptors
```

## QDax core algorithms
QDax currently supports the following algorithms:

| Algorithm | Example |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [MAP-Elites](https://arxiv.org/abs/1504.04909) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/mapelites.ipynb) |
| [CVT MAP-Elites](https://arxiv.org/abs/1610.05729) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/mapelites.ipynb) |
| [Policy Gradient Assisted MAP-Elites (PGA-ME)](https://hal.archives-ouvertes.fr/hal-03135723v2/file/PGA_MAP_Elites_GECCO.pdf) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/pgame.ipynb) |
| [DCRL-ME](https://arxiv.org/abs/2401.08632) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/dcrlme.ipynb) |
| [QDPG](https://arxiv.org/abs/2006.08505) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/qdpg.ipynb) |
| [CMA-ME](https://arxiv.org/pdf/1912.02400.pdf) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/cmame.ipynb) |
| [OMG-MEGA](https://arxiv.org/abs/2106.03894) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/omgmega.ipynb) |
| [CMA-MEGA](https://arxiv.org/abs/2106.03894) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/cmamega.ipynb) |
| [Multi-Objective MAP-Elites (MOME)](https://arxiv.org/abs/2202.03057) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/mome.ipynb) |
| [MAP-Elites Evolution Strategies (MEES)](https://dl.acm.org/doi/pdf/10.1145/3377930.3390217) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/mees.ipynb) |
| [MAP-Elites PBT (ME-PBT)](https://openreview.net/forum?id=CBfYffLqWqb) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/me_sac_pbt.ipynb) |
| [MAP-Elites Low-Spread (ME-LS)](https://dl.acm.org/doi/abs/10.1145/3583131.3590433) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/me_ls.ipynb) |

## QDax baseline algorithms
The QDax library also provides implementations for some useful baseline algorithms:

| Algorithm | Example |
| --- | --- |
| [DIAYN](https://arxiv.org/abs/1802.06070) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/diayn.ipynb) |
| [DADS](https://arxiv.org/abs/1907.01657) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/dads.ipynb) |
| [SMERL](https://arxiv.org/abs/2010.14484) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/smerl.ipynb) |
| [NSGA2](https://ieeexplore.ieee.org/document/996017) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/nsga2_spea2.ipynb) |
| [SPEA2](https://www.semanticscholar.org/paper/SPEA2%3A-Improving-the-strength-pareto-evolutionary-Zitzler-Laumanns/b13724cb54ae4171916f3f969d304b9e9752a57f) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/nsga2_spea2.ipynb) |
| [Population Based Training (PBT)](https://arxiv.org/abs/1711.09846) | [![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adaptive-intelligent-robotics/QDax/blob/main/examples/sac_pbt.ipynb) |

## QDax Tasks
The QDax library also provides numerous implementations for several standard Quality-Diversity tasks.

All those implementations, and their descriptions are provided in the [tasks directory](./qdax/tasks).

## Contributing
Issues and contributions are welcome. Please refer to the [contribution guide](https://qdax.readthedocs.io/en/latest/guides/CONTRIBUTING/) in the documentation for more details.

## Related Projects
- [EvoJAX: Hardware-Accelerated Neuroevolution](https://github.com/google/evojax). EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. [Paper](https://arxiv.org/abs/2202.05008)
- [evosax: JAX-Based Evolution Strategies](https://github.com/RobertTLange/evosax)

## Citing QDax
If you use QDax in your research and want to cite it in your work, please use:
```
@article{chalumeau2024qdax,
title={Qdax: A library for quality-diversity and population-based algorithms with hardware acceleration},
author={Chalumeau, Felix and Lim, Bryan and Boige, Raphael and Allard, Maxime and Grillotti, Luca and Flageat, Manon and Mac{\'e}, Valentin and Richard, Guillaume and Flajolet, Arthur and Pierrot, Thomas and others},
journal={Journal of Machine Learning Research},
volume={25},
number={108},
pages={1--16},
year={2024}
}
```

## Contributors

QDax was developed and is maintained by the [Adaptive & Intelligent Robotics Lab (AIRL)](https://www.imperial.ac.uk/adaptive-intelligent-robotics/) and [InstaDeep](https://www.instadeep.com/).


AIRL_Logo InstaDeep_Logo