Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/adeel-intizar/xtreme-vision

A High Level Python Library to empower students, developers to build applications and systems enabled with computer vision capabilities.
https://github.com/adeel-intizar/xtreme-vision

artificial-intelligence artificial-neural-networks centernet computer-vision deep-learning image-processing instance-segmentation keras keras-tensorflow machine-learning object-detection python resnet retinanet segmentation semantic-segmentation tensorflow tf-keras xtreme-vision yolov4

Last synced: 3 months ago
JSON representation

A High Level Python Library to empower students, developers to build applications and systems enabled with computer vision capabilities.

Awesome Lists containing this project

README

        

# Xtreme-Vision

[![Build Status](https://camo.githubusercontent.com/6446a7907a4d4f8de024ec85750feb07d7914658/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f70617472656f6e2d646f6e6174652d79656c6c6f772e737667)](https://patreon.com/adeelintizar) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE.txt)

![](assets/intro.gif)

`Go to PyPI page`> [Here](https://pypi.org/project/xtreme-vision/)

This is the Official Repository of Xtreme-Vision. Xtreme-Vision is a High Level Python Library which is built with simplicity in mind for Computer Vision Tasks, such as Object-Detection, Human-Pose-Estimation, Segmentation Tasks, it provides the support of a list of state-of-the-art algorithms, You can Start Detecting with Pretrained Weights as well as You can train the Models On Custom Dataset and with Xtreme-Vision you have the Power to detect/segment only the Objects of your interest

Currently, It Provides the Solution for the following Tasks:
- Object Detection
- Pose Estimation
- Object Segmentation
- Human Part Segmentation

For Detection with pre-trained models it provides:
- RetinaNet
- CenterNet
- YOLOv4
- TinyYOLOv4
- Mask-RCNN
- DeepLabv3+ (Ade20k)
- CDCL (Cross Domain Complementary Learning)

For Custom Training It Provides:
- YOLOv4
- TinyYOLOv4
- RetinaNet with (resnet50, resnet101, resnet152)

![](assets/pose.gif)

>If You Like this Project, Sponser it here [![Build Status](https://camo.githubusercontent.com/6446a7907a4d4f8de024ec85750feb07d7914658/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f70617472656f6e2d646f6e6174652d79656c6c6f772e737667)](https://patreon.com/adeelintizar)

### Dependencies:
- tensorflow >= 2.3.0
- keras
- opencv-python
- numpy
- pillow
- matplotlib
- pandas
- scikit-learn
- scikit-image
- imgaug
- labelme2coco
- progressbar2
- scipy
- h5py
- configobj

## **`Get Started:`**
```python
!pip install xtreme-vision
```
>### `For More Tutorials of Xtreme-Vision, Click` [Here](https://github.com/Adeel-Intizar/Xtreme-Vision/tree/master/Tutorials)
# **`YOLOv4` Example**

### **`Image Object Detection` Using `YOLOv4`**

```python
from xtreme_vision.Detection import Object_Detection

model = Object_Detection()
model.Use_YOLOv4()
model.Detect_From_Image(input_path='kite.jpg',
output_path='./output.jpg')

from PIL import Image
Image.open('output.jpg')
```