Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/adithya-s-k/rag-saas

⚡Ship RAG Solutions Quickly and effortlessly
https://github.com/adithya-s-k/rag-saas

ai-saas arize-phoenix llamaindex mongodb qdrant rag saas saas-boilerplate

Last synced: 4 days ago
JSON representation

⚡Ship RAG Solutions Quickly and effortlessly

Awesome Lists containing this project

README

        

RAG SaaS



Ship RAG solutions quickly⚡


RAG-SaaS Logo


A end to end SaaS Solution for Retrieval-Augmented Generation (RAG)
and Agentic based applications.


Features ·
Tech Stack ·
Getting Started ·
Deployment ·
Roadmap



GitHub Stars


GitHub Forks


GitHub Issues


GitHub Pull Requests


Features
Demo Video




  • 🔐 Basic Authentication

  • 💬 Chat History Tracking

  • 🧠 Multiple RAG Variations

    • Basic RAG

    • Two additional configurations



  • 👨‍💼 Admin Dashboard

    • 📥 Data Ingestion

    • 📊 Monitoring

    • 👁️ Observability

    • 🔄 RAG Configuration Switching



  • 🗄️ S3 Integration for PDF uploads

  • 🐳 Easy Deployment with Docker / Docker Compose






![f937cd54-217f-4106-81b6-56636a17306f (1)](https://github.com/user-attachments/assets/2f2c75fa-a3f0-4311-9a43-554d8cb3e04e)


## Tech Stack

- 🦙 LlamaIndex: For building and orchestrating RAG pipelines
- 📦 MongoDB: Used as both a normal database and a vector database
- ⚡ FastAPI: Backend API framework
- ⚛️ Next.js: Frontend framework
- 🔍 Qdrant: Vector database for efficient similarity search
- 👁️ Arize Phoenix: Observability Platform to monitor/evaluate your RAG system

## 🌟 Why RAG-SaaS?

Setting up reliable RAG systems can be time-consuming and complex. RAG-SaaS allows developers to focus on fine-tuning and developing their RAG pipeline rather than worrying about packaging it into a usable application. Built on top of [create-llama](https://www.llamaindex.ai/blog/create-llama-a-command-line-tool-to-generate-llamaindex-apps-8f7683021191) by LlamaIndex, RAG-SaaS provides a solid foundation for your RAG-based projects.

## 🚀 Getting Started

1. Clone the repository:
```bash
git clone https://github.com/adithya-s-k/RAG-SaaS.git
cd RAG-SaaS
```

## 🐳 Docker Compose Deployment

### Environment Variables

🔑 How to Set up .env

### Environment Variables

To properly configure and run RAG-SaaS, you need to set up several environment variables. These are divided into three main sections: Frontend, Backend, and Docker Compose. Here's a detailed explanation of each:

#### Frontend Environment (./frontend/.env.local)

- `NEXT_PUBLIC_SERVER_URL`: (Compulsory) The endpoint URL of your FastAPI server.
- `NEXT_PUBLIC_CHAT_API`: (Compulsory) Derived from NEXT_SERVER_URL, typically set to `${NEXT_PUBLIC_SERVER_URL}/api/chat`.

#### Backend Environment (./backend/.env)

1. Model Configuration:

- `MODEL_PROVIDER`: (Compulsory) The AI model provider (e.g., 'openai').
- `MODEL`: (Compulsory) The name of the LLM model to use.
- `EMBEDDING_MODEL`: (Compulsory) The name of the embedding model.
- `EMBEDDING_DIM`: (Compulsory) The dimensionality of the embedding model.

2. OpenAI Configuration:

- `OPENAI_API_KEY`: (Compulsory) Your OpenAI API key.

3. Application Settings:

- `CONVERSATION_STARTERS`: (Compulsory) A list of starter questions for users.
- `SYSTEM_PROMPT`: (Compulsory) The system prompt for the AI model.
- `SYSTEM_CITATION_PROMPT`: (Optional) Additional prompt for citation.
- `APP_HOST`: (Compulsory) The host address for the backend (default: '0.0.0.0').
- `APP_PORT`: (Compulsory) The port for the backend (default: 8000).

4. Database Configuration:

- `MONGODB_URI`: (Compulsory) The MongoDB connection URI.
- `MONGODB_NAME`: (Compulsory) The MongoDB database name (default: 'RAGSAAS').
- `QDRANT_URL`: (Compulsory) The URL for the Qdrant server.
- `QDRANT_COLLECTION`: (Compulsory) The Qdrant collection name.
- `QDRANT_API_KEY`: (Optional) API key for Qdrant authentication.

5. Authentication:

- `JWT_SECRET_KEY`: (Compulsory) Secret key for signing JWT tokens.
- `JWT_REFRESH_SECRET_KEY`: (Compulsory) Secret key for signing JWT refresh tokens.
- `ADMIN_EMAIL`: (Compulsory) Administrator email for application login.
- `ADMIN_PASSWORD`: (Compulsory) Administrator password for application login.

6. AWS S3 Configuration (Optional):

- `AWS_ACCESS_KEY_ID`: AWS Access Key ID.
- `AWS_SECRET_ACCESS_KEY`: AWS Secret Access Key.
- `AWS_REGION`: AWS Region for your services.
- `BUCKET_NAME`: The name of the S3 bucket to use.

7. Observability:
- `ARIZE_PHOENIX_ENDPOINT`: (Optional) Endpoint for Arize Phoenix observability.

#### S3 Integration

To enable S3 integration for PDF uploads/Ingestion:

1. Set the following environment variables in your `.env` file:

```

AWS_ACCESS_KEY_ID=your_access_key
AWS_SECRET_ACCESS_KEY=your_secret_key
AWS_REGION=bucket_region
BUCKET_NAME=your_bucket_name

```

### Docker Compose Env (./env)

```
backend:
build:
context: ./backend
dockerfile: Dockerfile
image: ragsaas/backend:latest
container_name: backend
ports:
- '8000:8000'
environment:
# MongoDB Configuration
MONGODB_NAME: RAGSAAS
MONGODB_URI: mongodb://admin:password@mongodb:27017/
# Qdrant Configuration
QDRANT_COLLECTION: default
QDRANT_URL: http://qdrant:6333
# QDRANT_API_KEY:
# OPENAI_API_KEY is compulsory
OPENAI_API_KEY:
# Backend Application Configuration
MODEL_PROVIDER: openai
MODEL: gpt-4o-mini
EMBEDDING_MODEL: text-embedding-3-small
EMBEDDING_DIM: 1536
FILESERVER_URL_PREFIX: http://backend:8000/api/files
SYSTEM_PROMPT: 'You are a helpful assistant who helps users with their questions.'
APP_HOST: 0.0.0.0
APP_PORT: 8000
JWT_SECRET_KEY:
JWT_REFRESH_SECRET_KEY:
ARIZE_PHOENIX_ENDPOINT: http://arizephoenix:4317
```

For Docker Compose deployment, use:

```bash
docker compose up -d
```

Pull down the containers

```bash
docker compose down
```

### Development Mode

To run the project in development mode, follow these steps:

1. **Start the Next.js Frontend:**

Navigate to the `frontend` directory and install the required dependencies. Then, run the development server:

```bash
cd frontend
npm install
npm run dev
```

2. **Set Up the Vector Database (Qdrant), Database (MongoDB), and Observability Platform (Arize Phoenix):**

You can either self-host these services using Docker or use hosted solutions.

**Self-Hosted Options:**

- Qdrant:

```bash
docker pull qdrant/qdrant
```

- MongoDB:

```bash
docker pull mongo
```

- Arize Phoenix:
```bash
docker pull arizephoenix/phoenix
```

**Hosted Options:**

- Qdrant Cloud: [Qdrant Cloud](https://cloud.qdrant.io/)
- MongoDB Atlas: [MongoDB Atlas](https://www.mongodb.com/cloud/atlas)
- Arize Phoenix: [Arize Phoenix](https://app.phoenix.arize.com/)

3. **Start the FastAPI Server:**

Navigate to the `backend` directory and set up the Python environment. You can use either Conda or Python's built-in `venv`:

```bash
cd backend
```

**Using Conda:**

```bash
conda create -n ragsaas-venv python=3.11
conda activate ragsaas-venv
```

**Using Python's `venv`:**

```bash
python -m venv ragsaas-venv
\ragsaas-venv\Scripts\activate # On Windows
source ragsaas-venv/bin/activate # On macOS/Linux
```

Install the required dependencies and run the server:

```bash
pip install -e .
python main.py
```

---

## Roadmap

- [x] add support to store ingested data in AWS S3
- [x] Add Docker compose for each set up
- [x] Implement Observability
- [ ] Improve authentication system
- [ ] Integrate OmniParse API for efficient Data ingestion
- [ ] Provide more control to Admin over RAG configuration
- [ ] Implement Advanced and Agentic RAG

## 👥 Contributing

We welcome contributions to RAG-SaaS! Please see our [CONTRIBUTING.md](CONTRIBUTING.md) for more details on how to get started.

## 📄 Licensing

This project is available under a dual license:

- Apache License 2.0 for students, developers, and individuals
- GNU General Public License v3.0 for companies and commercial use

See the [LICENSING.md](LICENSING.md) file for more details.

## 🙏 Acknowledgements

This project is built on the following frameworks, technologies and tools:

- [LlamaIndex](https://www.llamaindex.ai/) for the create-llama tool and RAG orchestration
- [FastAPI](https://fastapi.tiangolo.com/)
- [Next.js](https://nextjs.org/)
- [MongoDB](https://www.mongodb.com/)
- [Qdrant](https://qdrant.tech/)
- [Arize Phoenix](https://docs.arize.com/phoenix)

## Contact & Support

### Bug Reports

If you encounter any issues or bugs, please report them in the [Issues](https://github.com/adithya-s-k/RAG-SaaS/issues) tab of our GitHub repository.

### Commercial Use & Custom Solutions

For inquiries regarding:

- Commercial licensing
- Custom modifications
- Managed deployment
- Specialized integrations

Please contact: [email protected]

We're here to help tailor RAG-SaaS to your specific needs and ensure you get the most out of our solution.

## Star History



Star History Chart