An open API service indexing awesome lists of open source software.

https://github.com/aditya-ranjan1234/garment-industry-ml-solutions

Applications on ML in garment industry
https://github.com/aditya-ranjan1234/garment-industry-ml-solutions

applications ml streamlit

Last synced: 4 months ago
JSON representation

Applications on ML in garment industry

Awesome Lists containing this project

README

          

# Garment ML Dashboard

A comprehensive web-based dashboard for garment manufacturing analytics, quality control, and machine learning predictions.

## Features

- **Production Monitoring**
- Real-time production metrics
- Production trends visualization
- Efficiency analysis
- Line balancing insights

- **Quality Control**
- Quality metrics tracking
- Defect analysis
- Quality trends visualization
- Defect type distribution

- **Machine Learning Predictions**
- Production optimization
- Quality prediction
- Parameter optimization
- Confidence scoring

- **Simulation Tools**
- Production simulation
- Quality impact analysis
- Parameter optimization
- What-if scenarios

## Prerequisites

- Python 3.8 or higher
- pip (Python package installer)
- Virtual environment (recommended)

## Installation

1. Clone the repository:
```bash
git clone
cd garment-ml-dashboard
```

2. Create and activate a virtual environment:
```bash
# Windows
python -m venv venv
.\venv\Scripts\activate

# Linux/Mac
python3 -m venv venv
source venv/bin/activate
```

3. Install dependencies:
```bash
pip install -r requirements.txt
```

4. Set up environment variables:
Create a `.env` file in the root directory with the following content:
```
SECRET_KEY=your-secret-key
DATABASE_URL=sqlite:///garment_ml.db
```

## Running the Application

1. Start the Flask development server:
```bash
flask run
```

2. Access the dashboard at `http://localhost:5000`

## Project Structure

```
garment-ml-dashboard/
├── app.py # Main Flask application
├── requirements.txt # Python dependencies
├── .env # Environment variables
├── static/ # Static files
│ ├── css/ # CSS styles
│ └── js/ # JavaScript files
├── templates/ # HTML templates
├── models/ # ML models
├── data/ # Data files
└── venv/ # Virtual environment
```

## Data Structure

The application uses the following data structure:

- Production Data:
- Date
- Product ID
- Total Units
- Good Units
- Defect Units
- Temperature
- Pressure
- Speed
- Humidity

- Quality Metrics:
- Quality Score
- Defect Rate
- Defect Types
- Parameter Impact

## API Endpoints

- `/api/production-data` - Get production data
- `/api/quality-metrics` - Get quality metrics
- `/api/predictions` - Get ML predictions
- `/api/optimization` - Get optimal parameters
- `/api/quality-trends` - Get quality trends
- `/api/defect-analysis` - Get defect analysis

## Machine Learning Models

The application uses the following ML models:

1. Production Model:
- Predicts production output based on parameters
- Uses historical data for training
- Provides confidence scores

2. Quality Model:
- Predicts quality metrics
- Identifies parameter impacts
- Suggests optimizations

## Contributing

1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a Pull Request

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Support

For support, please open an issue in the GitHub repository or contact the development team.

## Acknowledgments

- Flask framework
- Plotly for visualizations
- scikit-learn for ML models
- Bootstrap for UI components