Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/adroll/mero

scalable and lightweight OTP Erlang client for memcached
https://github.com/adroll/mero

aws cluster distributed erlang hacktoberfest

Last synced: 4 days ago
JSON representation

scalable and lightweight OTP Erlang client for memcached

Awesome Lists containing this project

README

        

Mero
========

Mero is a scalable and lightweight OTP Erlang client for memcache. Mero allows
interaction with different clusters, specifying different number of pools per
server and sharding algorithms per cluster.

Mero achieves high-performance in a number of ways. Mero does not use an Erlang
process per socket. Each pool worker adjusts the number of available sockets
based on demand and sockets are shared to the point of usage, avoiding copying
of terms through the system, as is present in the per-process design common in
other pooling libraries. All pools are registered with a local name and its
workers are created on startup, removing pool selection bottlenecks and worker
creation latency.

If a connection to the memcached server fails there is a mechanism to delay
connection retries. All the connections are renewed every time interval.

The storage module is configurable so you can use different protocols or even
use a storage different than memcache.

It includes a callback that will be called to notify of specific error events.
These events have the form of:

```erlang
{Id :: list(atoms),
Args :: list([{Key :: cluster_name | host | port | error_reason,
Value :: term()}])
}
```

Example Ids are:

- `[socket, connect, ok]`
- `[socket, connect, error]`
- `[socket, send, error]`
- `[socket, rcv, error]`
- `[socket, controlling_process, error]`

Configuration
=============

Please consult `mero.app.src` to see all the available options. The sharding
algorithms available are `shard_phash2` and `shard_crc32`.

```erlang
[{cluster_a,
[{servers, [{"server1", 11211},
{"server2", 11211},
{"server3", 11211},
{"server4", 11211},
{"server5", 11211},
{"server6", 11211},
{"server7", 11211},
{"server8", 11211}]},
{sharding_algorithm, {mero, shard_phash2}}, %% Module and function
{workers_per_shard, 3}, %% Number of pools that each server will have
{pool_worker_module, mero_wrk_tcp_txt}]
},

{cluster_b,
[{servers, [{"localhost", 11211}]},
{sharding_algorithm, {mero, shard_crc32}},
{workers_per_shard, 1},
{pool_worker_module, mero_wrk_tcp_txt}]
},
...
]

```

Cluster Auto Discovery
======================

Configuration can also be implemented to support auto discovery of the cluster as opposed to hardcoding nodes.
Provide the configuration endpoint ([AWS Reference](http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/AutoDiscovery.html)) and port as in the following example.

```erlang
[{cluster_b,
[{servers, {elasticache, "ConfigEndpointHostname.com", PortNumber}},
{sharding_algorithm, {mero, shard_crc32}},
{workers_per_shard, 1},
{pool_worker_module, mero_wrk_tcp_binary}]
},
...
]

```

If instead of using ElastiCache a custom auto discovery is needed you can provide your own function (specified as a MFA) that returns `{ok, list({Host :: inet:hostname(), Port :: inet:port_number()})}` to be used. Example:
```erlang
[{cluster_b,
[{servers, {mfa, {my_module, my_function, []}}},
{sharding_algorithm, {mero, shard_crc32}},
{workers_per_shard, 1},
{pool_worker_module, mero_wrk_tcp_binary}]
},
...
]

```

```erlang
-module(my_module).

-export([my_function/0]).

my_function() ->
{ok, [{"my_memcached_server", 11211}]}.

```

ElastiCache Multiple clusters Auto Discovery
============================================

We also support the setup of multiple physical clusters with autodiscovery assigned to the same logical cluster.
It could be the case in which some of these physical clusters perform better than others, in which you can use a third argument called the ClusterSpeedFactor which has to be a small integer. The default `ClusterSpeedFactor` is `1`.

If an alternate cluster is 2 times faster than the fist one -it can have twice as many cpus or memory-, you can set it up with a `ClusterSpeedFactor` of `2`. This will create 2 times more workers for that "faster cluster", which in practice will send twice as many connections & requests to that cluster than to the other weaker clusters.

```erlang
[{cluster_c,
[{servers,
{elasticache,
[{"ConfigEndpointHostname.com", 11211},
{"ConfigEndpointHostnameAltThatPerforms2TimesBetter.com", 11211, 2},
{"ConfigEndpointHostnameAltThatPerforms3TimesBetter.com", 11211, 3}]
}},
{sharding_algorithm, {mero, shard_crc32}},
{workers_per_shard, 1},
{pool_worker_module, mero_wrk_tcp_binary}]}]
```

Auto Discovery Changes
======================

Mero will also monitor elasticache or your custom provided MFA for changes in the configuration. It will poll the config provider according to the values of `conf_monitor_min_sleep` and `conf_monitor_max_sleep` in the configuration. The polling will run at a random interval that will always be between those two values (in milliseconds).

If a cluster configuration change is found after a poll, the connections to the servers of that cluster will be restablished. This is done using OTP supervision principles: Mero maintains a supervision tree per cluster, which is stopped and restarted if its configuration changes.

Using Mero
===============
Mero is a regular OTP application, managed with [rebar3](http://rebar3.org/). Therefore you can do stuff like...

```shell
rebar3 do compile, xref, eunit, ct
```

...or...

```shell
rebar3 test
```

There are three ways to start this application:

### From an erlang shell
```erlang
$rebar3 shell

> mero:increment_counter(default, <<"key">>).
{ok,1}

> mero:increment_counter(default, <<"key">>).
{ok,2}

> mero:get(default, <<"key">>).
{<<"key">>,<<"2">>}

> mero:set(default, <<"key">>, <<"5">>, 3600, 5000).
ok

> mero:increment_counter(default, <<"key">>).
{ok,6}

> mero:set(default, <<"key">>, <<"50">>, 3600, 5000).
ok

> mero:increment_counter(default, <<"key">>).
{ok,51}

> mero:increment_counter(default, <<"key2">>).
{ok,1}

> mero:increment_counter(default, <<"key3">>).
{ok,1}

> mero:increment_counter(default, <<"key4">>).
{ok,1}

> mero:mget(default, [<<"key">>, <<"key2">>, <<"key3">>, <<"key4">>], 5000).
[{<<"key">>,<<"51">>},
{<<"key2">>,<<"1">>},
{<<"key3">>,<<"1">>},
{<<"key4">>,<<"1">>}]

> mero:set(default, <<"key">>, <<"key">>, 3600, 5000).
ok

> mero:set(default, <<"key2">>, <<"key2">>, 3600, 5000).
ok

> mero:increment_counter(default, <<"key">>).
{error,incr_decr_on_non_numeric_value}
=ERROR REPORT==== 3-Apr-2015::13:57:40 ===
error: memcached_request_failed
client: {client,#Port<0.3562>,undefined,
{mero,stat_event_callback,
[{cluster_name,default},
{host,"localhost"},
{port,11211}]}}
cmd: {5,{<<"key">>,<<"1">>,<<"1">>,<<"86400">>}}
reason: incr_decr_on_non_numeric_value

> mero:mget(default, [<<"key">>, <<"key2">>, <<"key3">>, <<"key4">>], 5000).
[{<<"key">>,<<"key">>},
{<<"key2">>,<<"key2">>},
{<<"key3">>,<<"1">>},
{<<"key4">>,<<"1">>}]

> mero:flush_all(default).
[{default,ok}]

> mero:mget(default, [<<"key">>, <<"key2">>, <<"key3">>, <<"key4">>], 5000).
[{<<"key">>,undefined},
{<<"key2">>,undefined},
{<<"key3">>,undefined},
{<<"key4">>,undefined}]

> mero:add(default, <<"key">>, <<"value">>, 1000, 5000).
ok

> mero:add(default, <<"key">>, <<"value">>, 1000, 5000).
{error,already_exists}

=ERROR REPORT==== 3-Apr-2015::14:03:25 ===
error: memcached_request_failed
client: {client,#Port<0.3558>,undefined,
{mero,stat_event_callback,
[{cluster_name,default},
{host,"localhost"},
{port,11211}]}}
cmd: {2,{<<"key">>,<<"value">>,<<"1000">>}}
reason: already_exists

> {mero:madd(default, [{<<"foo">>, <<"bar">>, 1000},
{<<"bar">>, <<"foo">>, 1000},
{<<"foo">>, <<"baz">>, 1000}], 5000),
mero:mget(default, [<<"foo">>, <<"bar">>], 5000)}.
{[ok,ok,{error,already_exists}],
[{<<"bar">>,<<"foo">>},{<<"foo">>,<<"bar">>}]}

> mero:mcas(default, [{<<"xyzzy">>, <<"bar">>, 0, 360391},
{<<"qwer">>, <<"asdfsdf">>, 0, 360390}], 5000).
[ok,{error,already_exists}]
```

### Inside a Node
Set the configuration in the mero.app.src file and start the application inside your OTP node as a regular OTP app.

### As an OTP included application
Pass the ClusterConfiguration as a parameter to the supervisor of the application.

```erlang
mero_sup:start_link([{default,[{servers,[{"localhost",11211}]},
{sharding_algorithm,{mero,shard_crc32}},
{workers_per_shard,1},
{pool_worker_module,mero_wrk_tcp_txt}]}]).

```

Testing the library against a local memcached server:
=====================================================

**Warning:** This will erase all the contents of the memcached server it connects to (`"localhost"` by default).

To run tests using a real memcached server, uncomment the test cases at `test/mero_test_with_local_memcached_SUITE.erl`