Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aehrc/imageclefmedical_caption_23
MedICap: Code for the participation of team CSIRO at the ImageCLEFmedical Caption task of 2023.
https://github.com/aehrc/imageclefmedical_caption_23
image-captioning medical-image-captioning medical-imaging multimodal multimodal-learning report-generation
Last synced: 2 months ago
JSON representation
MedICap: Code for the participation of team CSIRO at the ImageCLEFmedical Caption task of 2023.
- Host: GitHub
- URL: https://github.com/aehrc/imageclefmedical_caption_23
- Owner: aehrc
- License: apache-2.0
- Created: 2023-05-30T08:48:48.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-16T03:16:51.000Z (4 months ago)
- Last Synced: 2024-10-17T16:03:27.957Z (4 months ago)
- Topics: image-captioning, medical-image-captioning, medical-imaging, multimodal, multimodal-learning, report-generation
- Language: Jupyter Notebook
- Homepage: https://huggingface.co/aehrc/medicap
- Size: 643 KB
- Stars: 2
- Watchers: 7
- Forks: 0
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MedICap: A Concise Model for Medical Image Captioning
MedICap is a medical image captioning model that placed first in the ImageCLEFmedical Caption 2023 challenge: https://www.imageclef.org/2023/medical/caption (team CSIRO). It is available on the Hugging Face Hub: https://huggingface.co/aehrc/medicap. It is presented in the working notes and at CLEF 2023.
#### Working notes:
[https://www.dei.unipd.it/~faggioli/temp/CLEF2023-proceedings/paper-132.pdf
](https://ceur-ws.org/Vol-3497/paper-132.pdf)#### BibTeX:
```bibtex
@inproceedings{nicolson_aehrc_2021,
address = {Thessaloniki, Greece},
title = {A {C}oncise {M}odel for {M}edical {I}mage {C}aptioning},
copyright = {All rights reserved},
language = {en},
booktitle = {Proceedings of the 14th {International} {Conference} of the {CLEF} {Association}},
author = {Nicolson, Aaron and Dowling, Jason and Koopman, Bevan},
month = sep,
year = {2023},
}
```|![](docs/models.drawio.png)|
|
|----|
|# Hugging Face model & checkpoint:
The Hugging Face model & checkpoint is available at: https://huggingface.co/aehrc/medicap.
# Notebook example:
An example of MedICap generating captions is given in `example.ipynb`.# Installation:
After cloning the repository, install the required packages in a virtual environment.
The required packages are located in `requirements.txt`:
```shell script
python -m venv --system-site-packages venv
source venv/bin/activate
python -m pip install --upgrade pip
python -m pip install --upgrade -r requirements.txt --no-cache-dir
```# Test the Hugging Face checkpoints:
To test the Hugging Face model:
```shell
dlhpcstarter -t imageclefmed_caption_2023_hf -c config/test_huggingface/007_no_ca_scst.yaml --stages_module tools.stages --test
```See [`dlhpcstarter==0.1.4`](https://github.com/csiro-mlai/dl_hpc_starter_pack) for more options.
Note: data will be saved in the experiment directory (`exp_dir` in the configuration file).
# Training:
To train with teacher forcing:
```
dlhpcstarter -t imageclefmed_caption_2023 -c config/train/002_no_ca.yaml --stages_module tools.stages --train
```The model can then be tested with the `--test` flag:
```
dlhpcstarter -t imageclefmed_caption_2023 -c config/train/002_no_ca.yaml --stages_module tools.stages --test
```To then train with Self-Critical Sequence Training (SCST) with the BERTScore reward:
1. Copy the path to the checkpoint from the `exp_dir` for the configuration above, then paste it in the configuration for SCST as `warm_start_ckpt_path`, then:
2.
```
dlhpcstarter -t mimic_cxr -c config/train/007_no_ca_scst.yaml --stages_module tools.stages --train
```See [`dlhpcstarter==0.1.4`](https://github.com/csiro-mlai/dl_hpc_starter_pack) for more options.
# Help/Issues:
If you need help, or if there are any issues, please leave an issue and we will get back to you as soon as possible.