Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/affromero/pixelcache
A versatile image processing library for Python with built-in support for caching, using Pillow, NumPy, and PyTorch.
https://github.com/affromero/pixelcache
image-processing numpy opencv pillow pytorch torchvision
Last synced: 10 days ago
JSON representation
A versatile image processing library for Python with built-in support for caching, using Pillow, NumPy, and PyTorch.
- Host: GitHub
- URL: https://github.com/affromero/pixelcache
- Owner: affromero
- License: mit
- Created: 2024-11-29T22:07:39.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2025-01-30T12:19:07.000Z (12 days ago)
- Last Synced: 2025-01-30T13:25:26.509Z (12 days ago)
- Topics: image-processing, numpy, opencv, pillow, pytorch, torchvision
- Language: Python
- Homepage:
- Size: 3.78 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# PixelCache
**Sometimes you do not care whether the image processing is done using NumPy or PyTorch or Pillow, and transfering between these libraries can be cumbersome. PixelCache provides a simple interface to perform image processing and transformation using these libraries, allowing you to focus on the task at hand.**
PixelCache is a Python library designed for versatile image processing and transformation, integrating the power of Pillow, NumPy, and PyTorch while supporting LRU caching.
PixelCache also supports LRU caching, which can be useful when you need to reuse the results of previously computed operations. This can be particularly helpful when working with large images or when you need to apply the same operation multiple times.
## Features
- **Image Manipulation:** Transform and process images using a simple interface that supports Pillow, NumPy, and PyTorch.
- **Smart Caching:** Utilize LRU caching to enhance performance by reusing previously computed results. It can be easily disable for whatever reason using the environment variable `DISABLE_LRU_CACHE=True`.
- **Versatile:** PixelCache supports a wide range of image processing operations, including resizing, cropping, blending, transform to RGB/Binary, flipping, bounding box extraction from binary masks, several operations suitable for binary masks, and more.## Installation
You can install PixelCache using pip:
```bash
pip install pixelcache
```Or poetry:
```bash
poetry add pixelcache
```Or from source:
```bash
poetry add git+ssh://[email protected]:affromero/pixelcache.git
```## Basic Usage
HashableImage receives as input several types of inputs, such as URLs, paths, or Pillow images, Numpy arrays, or PyTorch tensors in the following form or shape:
### Valdid inputs:
- Paths: `str` | `Path`
- Pillow: `Image.Image`
- Numpy Arrays: `UInt8[np.ndarray, "h w 3"]` | `UInt8[np.ndarray, "h w"]` | `Bool[np.ndarray, "h w"]`
- Torch Tensors: `Float[torch.Tensor, "1 c h w"]` | `Bool[torch.Tensor, "1 1 h w"]`Example:
```python
from pixelcache import HashableImage
import torch
image = HashableImage(torch.rand(1, 3, 256, 256).float())
image_pil = image.pil()
image_numpy_bool = image.to_binary(0.5).numpy()
```### Basic Transformations:
At all times, it is possible to transform between them using the following methods:
- `pil()`: Returns a Pillow Image object
- `numpy()`: Returns a Numpy Array object
- `tensor()`: Returns a PyTorch Tensor objectAdditionally, there is a method to convert the image to 3 channels RGB or binary:
- `to_rgb()`: Convert to RGB, which returns another HashableImage
- `to_binary(threshold: float)`: Convert to Boolean, which returns another HashableImageFinally, there is a method to save the image to disk:
- `save(path: str | Path)`: Save the image to disk
## Usage Example 1
Blending two images using PixelCache:
```python
from pathlib import Pathfrom pixelcache import HashableDict, HashableImage, HashableList
from pixelcache.tools.logger import get_loggerlogger = get_logger()
image0 = "https://images.pexels.com/photos/28811907/pexels-photo-28811907/free-photo-of-majestic-elk-standing-in-forest-clearing.jpeg"
image1 = Path("pixelcache") / "assets" / "pixel_cache.png"
images_hash = [HashableImage(image) for image in [image0, image1]]
for image in images_hash:
logger.info(f"Image: {image} - Hash: {hash(image)}")
logger.info(f"Hash for list of images: {hash(HashableList(images_hash))}")
image_size = images_hash[1].size()
logger.info(f"Image size: {image_size} - Resizing all to this size")
resized_images = [image.resize(image_size) for image in images_hash]
# blend images
blended_image = resized_images[0].blend(
resized_images[1], alpha=0.5, with_bbox=False
)
# binarize second image
blended_image_binarized = resized_images[0].blend(
resized_images[1].to_binary(0.5).invert_binary(),
alpha=0.2,
with_bbox=True,
)
output_debug = HashableDict(
{
"image base": HashableList([resized_images[0]]),
"image reference": HashableList([resized_images[1]]),
"blended_image": HashableList([blended_image]),
"blended_image_binarized": HashableList([blended_image_binarized]),
}
)
output = image1.parent / (str(image1.stem) + "_demo_blend.jpg")
HashableImage.make_image_grid(
output_debug, orientation="horizontal", with_text=True
).save(output)
logger.success(f"Output saved to: {output}")```
![Output](pixelcache/assets/pixel_cache_demo_blend.jpg)
## Usage Example 2
Extracting bounding boxes for cropping / unpadding from binary masks using PixelCache:
```python
from pathlib import Pathfrom pixelcache import HashableDict, HashableImage, HashableList, ImageSize
from pixelcache.tools.logger import get_loggerlogger = get_logger()
image0 = "https://images.pexels.com/photos/18624700/pexels-photo-18624700/free-photo-of-a-vintage-typewriter.jpeg"
image1 = Path("pixelcache") / "assets" / "pixel_cache.png"
images_hash = [HashableImage(image) for image in [image0, image1]]
for image in images_hash:
logger.info(f"Image: {image} - Hash: {hash(image)}")
logger.info(f"Hash for list of images: {hash(HashableList(images_hash))}")
image_size = images_hash[1].size()
logger.info(f"Image size: {image_size} - Resizing all to this size")
resized_images = [image.resize(image_size) for image in images_hash]
# crop images
increased_size_pad = ImageSize(
width=image_size.width + 1000, height=image_size.height + 1000
)
mask = (
images_hash[1]
.center_pad(increased_size_pad, fill=255)
.resize(image_size)
.to_space_color("HSV", getchannel="S")
.to_binary(0.3)
)
cropped = resized_images[1].crop_from_mask(mask)
uncropped = cropped.uncrop_from_bbox(
base=resized_images[0], bboxes=mask.mask2bbox(margin=0.0), resize=True
)
output_debug = HashableDict(
{
"image base": HashableList([resized_images[0]]),
"image reference": HashableList([resized_images[1]]),
"cropped_image": HashableList([cropped.resize(image_size)]),
"uncropped_image": HashableList([uncropped]),
}
)
output = image1.parent / (str(image1.stem) + "_demo_cropUncrop.jpg")
HashableImage.make_image_grid(
output_debug, orientation="horizontal", with_text=True
).save(output)
logger.success(f"Output saved to: {output}")```
![Output](pixelcache/assets/pixel_cache_demo_cropUncrop.jpg)
### Both examples can be found in the `examples` folder.
## Contributing
Contributions are welcome! Please open an issue or submit a pull request.
## License
This project is licensed under the MIT License