An open API service indexing awesome lists of open source software.

https://github.com/afmontoya/fake-news-detection

Fake News Detection Using Machine Learning
https://github.com/afmontoya/fake-news-detection

fake-news-detection jupyter machine-learning nlp

Last synced: 2 months ago
JSON representation

Fake News Detection Using Machine Learning

Awesome Lists containing this project

README

          

# 📰 Fake News Detection Using Machine Learning 🔍🤖

## 📌 Project Overview
Fake news is a major issue in today's digital world, where misinformation spreads rapidly. This project aims to **detect fake news articles using machine learning techniques**. By analyzing text patterns and linguistic features, the model predicts whether a given news article is **real or fake**.

---

## 🚀 Features
- 📝 **Text Preprocessing** (Tokenization, Stopword Removal, Lemmatization)
- 🔢 **TF-IDF Vectorization** to convert text into numerical features
- 🤖 **Machine Learning Models** (Logistic Regression, Naive Bayes)
- 📊 **Exploratory Data Analysis (EDA)**
- 🌐 **API Integration (Planned)** (Serve the model via Flask/FastAPI)
- 🎨 **Web App (Planned)** (User-friendly frontend using Streamlit/React)

---

## 💻 Installation & Setup
Follow these steps to set up and run the project locally.

### **1️⃣ Clone the Repository**
```bash
git clone https://github.com/your-username/fake-news-detection.git
cd fake-news-detection
```

### **2️⃣ Create a Virtual Environment**
```bash
python3 -m venv venv
source venv/bin/activate # Mac/Linux
venv\Scripts\activate # Windows
```

### **3️⃣ Install Dependencies**
```bash
pip install -r requirements.txt
```

### **4️⃣ Download the Dataset**
- This project uses the **Fake News Dataset** from [Kaggle](https://www.kaggle.com/c/fake-news/data).
- Place the `train.csv`, `test.csv`, and `submit.csv` files inside the **`data/`** folder.

---

## 📂 Project Structure
```
fake-news-detection/
│── README.md # Project documentation
│── LICENSE # Open-source license (MIT)
│── .gitignore # Ignore unnecessary files
│── requirements.txt # Dependencies
│── setup.py # Setup file (if needed)

├── data/ # Dataset files
│ ├── train.csv
│ ├── test.csv
│ ├── submit.csv

├── notebooks/ # Jupyter Notebooks
│ ├── eda.ipynb # Exploratory Data Analysis

├── models/ # Saved trained models

├── src/ # Source code
│ ├── preprocess.py # Data preprocessing script
│ ├── train_model.py # Model training script
│ ├── predict.py # Fake news classification script

├── api/ # API backend (Flask or FastAPI)

├── frontend/ # UI for interacting with the model

└── tests/ # Testing scripts
```

---

## 🔬 Running the Project

### **1️⃣ Run Exploratory Data Analysis**
View dataset statistics and visualizations using **Jupyter Notebook**:
```bash
jupyter notebook notebooks/eda.ipynb
```

### **2️⃣ Train the Model**
Train a machine learning model on the dataset:
```bash
python src/train_model.py
```

### **3️⃣ Make Predictions**
Use the trained model to classify news articles:
```bash
python src/predict.py --text "Breaking news: AI can now detect fake news!"
```

### **4️⃣ (Optional) Run the API**
To serve the model using an API (Flask/FastAPI), navigate to the `api/` folder and run:
```bash
python api/app.py
```

---

## 🛠️ Technology Stack
- **Programming Language** → Python 🐍
- **Libraries** → Pandas, NLTK, Scikit-Learn, Matplotlib, Seaborn
- **Machine Learning** → Logistic Regression, Naive Bayes, SVM (Optional)
- **Text Processing** → TF-IDF Vectorization, Tokenization, Stopword Removal
- **API (Planned)** → Flask or FastAPI
- **Frontend (Planned)** → Streamlit or React

---

## 🚀 Future Improvements
- ✅ **Deploy API for Predictions** (Flask/FastAPI)
- ✅ **Build a Web UI** (Streamlit/React)
- ✅ **Deep Learning Models** (LSTMs, Transformers)
- ✅ **Optimize Accuracy** with Hyperparameter Tuning

---

## 👨‍💻 Contributing
Contributions are welcome! Feel free to submit a **pull request** or open an **issue**.

### **🔹 Steps to Contribute**
1. Fork the repo.
2. Create a feature branch (`git checkout -b feature-name`).
3. Commit your changes (`git commit -m "Added new feature"`).
4. Push to the branch (`git push origin feature-name`).
5. Create a pull request.

---

## 📜 License
This project is licensed under the **MIT License**.

---

## 📞 Contact
👤 **[Albert F Montoya Jr]**
🔗 **[twitter.com/montoyamedia]**
📧 **[albert@montoyamedia.com]**

---