https://github.com/afondiel/edge-audio
An open and practical guide to Edge Audio.
https://github.com/afondiel/edge-audio
computer-audition edge-ai edge-audio edge-computing edge-devices embedded-ai embedded-audio
Last synced: 3 months ago
JSON representation
An open and practical guide to Edge Audio.
- Host: GitHub
- URL: https://github.com/afondiel/edge-audio
- Owner: afondiel
- License: mit
- Created: 2025-07-12T15:52:24.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-07-12T23:17:29.000Z (3 months ago)
- Last Synced: 2025-07-13T00:30:04.374Z (3 months ago)
- Topics: computer-audition, edge-ai, edge-audio, edge-computing, edge-devices, embedded-ai, embedded-audio
- Homepage:
- Size: 20.5 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
[](./CONTRIBUTING.md)
# Edge Audio :studio_microphone: | A Practical Guide
A practical guide for real-world AI audio applications for resource-constrained devices with industry standards in mind.
## New to Edge AI?
- Start with the [Edge AI Engineering](https://github.com/afondiel/edge-ai-engineering): a practical guide covering core concepts of the entire [Edge AI MLOps](https://docs.edgeimpulse.com/docs/concepts/edge-ai-fundamentals/what-is-edge-mlops) stack with industry blueprints.
- Then read this: [The Next AI Frontier is at the Edge](https://afondiel.github.io/posts/the-next-ai-frontier-is-at-the-edge/)
- Related work: [Edge Vision](https://github.com/afondiel/edge-vision)## Table of Contents
- [Introduction](#introduction)
- [Project Structure](#project-structure)
- [Getting Started](#getting-started)
- [Contributing](#contributing)
- [License](#license)
- [Resources](#resources)## Introduction
The goal of this guide is to provide resources for building, optimizing, and deploying AI audio applications at the edge, through hands-on examples including practical notebooks and real-world use cases across key industries.
### Key Concepts
**Industry Blueprints**
- Autonomous Systems
- Healthcare & Medical Imaging*
- Retail & Consumer Analytics
- Security & Surveillance
- Agriculture & Precision Farming
- Manufacturing & Quality Control
- Smart Cities & Urban Planning**Edge Optimization Lab**: techniques and tools for maximizing performance and efficiency of audio models on edge hardware
- Model Quantization
- Pruning Techniques
- Federated Learning
- Compiler Targets
- Hardware-Specific Optimization**Production Pipelines**: guides and templates for robust, scalable edge audio AI operations
- CI/CD for Edge
- Monitoring (Drift Detection, Edge Metrics Dashboard)
- OTA Updates
- Edge Security (Secure Boot, Data Encryption, Threat Detection, Privacy-Preserving Audio, Adversarial Robustness, Device Hardening, Compliance)**Reference Architectures**: blueprints for edge audio hardware and system design
- Microphone Array Setups
- Edge Server Specs
- IoT Connectivity
- Edge-Cloud Hybrid Models**Integration**
- Notebooks (hands-on deep dives)
- Companion Resources
- Industry-Specific Stardards## Project Structure
```
├── edge-ai-engineering/
│ ├── introduction-to-edge-ai.md
│ ├── edge-ai-architectures.md
│ ├── model-optimization-techniques.md
│ ├── hardware-acceleration.md
│ ├── edge-deployment-strategies.md
│ ├── real-time-processing.md
│ ├── privacy-and-security.md
│ ├── edge-ai-frameworks.md
│ └── benchmarking-and-performance.md
├── industry-blueprints/
│ ├── autonomous-systems/
│ │ ├── voice-command-recognition-tflite.md
│ │ ├── siren-detection-jetson.md
│ │ └── acoustic-scene-understanding.md
│ ├── healthcare-medical-imaging/
│ │ ├── heart-sound-analysis-edge.md
│ │ ├── respiratory-event-detection.md
│ │ └── patient-monitoring-audio.md
│ ├── retail-consumer-analytics/
│ │ ├── customer-sentiment-analysis.md
│ │ ├── in-store-sound-event-detection.md
│ │ └── voice-assistant-embedded.md
│ ├── security-surveillance/
│ │ ├── gunshot-detection-edge.md
│ │ ├── glass-break-detection.md
│ │ └── anomaly-detection-public-places.md
│ ├── agriculture-precision-farming/
│ │ ├── livestock-sound-monitoring.md
│ │ ├── machinery-failure-detection.md
│ │ └── environmental-sound-classification.md
│ ├── manufacturing-quality-control/
│ │ ├── equipment-fault-detection-audio.md
│ │ ├── process-monitoring-sound.md
│ │ └── predictive-maintenance-audio.md
│ └── smart-cities-urban-planning/
│ ├── urban-noise-mapping-edge.md
│ ├── emergency-sound-detection.md
│ └── public-transport-announcement-monitoring.md
├── edge-optimization-lab/
│ ├── model-quantization/
│ │ ├── post-training-int8.md
│ │ └── qat-pytorch.md
│ ├── pruning-techniques/
│ │ ├── magnitude-pruning.md
│ │ └── lottery-ticket-hypothesis.md
│ ├── federated-learning/
│ │ ├── privacy-preserving-audio.md
│ │ └── distributed-training.md
│ ├── compiler-targets/
│ │ ├── tvm-tutorial.md
│ │ └── onnx-runtime-guide.md
│ └── hardware-specific-optimization/
│ ├── nvidia-jetson-optimization.md
│ ├── raspberry-pi-edge-audio.md
│ └── microcontroller-tinyml-audio.md
├── production-pipelines/
│ ├── ci-cd-for-edge.md
│ ├── monitoring/
│ │ ├── drift-detection.md
│ │ └── edge-metrics-dashboard.md
│ ├── ota-updates.md
│ └── edge-security/
│ ├── secure-boot-implementation.md
│ ├── data-encryption-edge.md
│ ├── threat-detection/
│ │ ├── abnormal-sound-alerts.md
│ │ └── tamper-detection.md
│ ├── privacy-preserving-audio/
│ │ ├── federated-learning-techniques.md
│ │ └── differential-privacy.md
│ ├── model-security/
│ │ └── adversarial-robustness.md
│ ├── edge-device-hardening/
│ │ ├── secure-deployment.md
│ │ └── secure-communication.md
│ └── industry-compliance/
│ ├── regulatory-standards.md
│ └── ethical-ai-guidelines.md
├── reference-architectures/
│ ├── microphone-array-setups.md
│ ├── edge-server-specs.md
│ ├── iot-connectivity.md
│ └── edge-cloud-hybrid-models.md
└── _integration/
├── cs-notebook-redirects.md
├── companion-resources.md
└── industry-specific-regulations.md
```## Getting Started
1. Clone this repository:
```bash
git clone https://github.com/afondiel/edge-audio.git
```
2. Explore the [Edge AI Engineering](#edge-ai-engineering) section for foundational knowledge.
3. Dive into [Industry Blueprints](#key-concepts) for hands-on, sector-specific audio AI guides.
4. Use the [Edge Optimization Lab](#key-concepts) and [Production Pipeline](#key-concepts) for deployment and scaling.## Contributing
See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines on how to contribute, report issues, or suggest new blueprints.
## License
Distributed under the MIT License. See `LICENSE` for more information.
## Resources
- [Computer Audio Notes](https://github.com/afondiel/computer-science-notebook/tree/master/core/ai-ml/computer-audition)
- [The Hugging Face Course on Transformers for Audio](https://github.com/huggingface/audio-transformers-course)Books:
- [Machine Learning Systems: Principles and Practices of Engineering Artificially Intelligent Systems (Vijay Janapa Reddi)](https://mlsysbook.ai/)[Back to the Top](#table-of-contents)