Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/afondiel/how-diffusion-models-work-crash-course-dlai
Diffusion Models crash course with Pytorch from DeepLearningAI
https://github.com/afondiel/how-diffusion-models-work-crash-course-dlai
computer-vision conditional-diffusion conditional-generation diffusion-models genai generative-ai latent-diffusion latent-space unconditional-generation vision-models
Last synced: about 1 month ago
JSON representation
Diffusion Models crash course with Pytorch from DeepLearningAI
- Host: GitHub
- URL: https://github.com/afondiel/how-diffusion-models-work-crash-course-dlai
- Owner: afondiel
- Created: 2024-10-14T14:47:13.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-11-14T13:56:58.000Z (about 2 months ago)
- Last Synced: 2024-11-14T14:42:41.432Z (about 2 months ago)
- Topics: computer-vision, conditional-diffusion, conditional-generation, diffusion-models, genai, generative-ai, latent-diffusion, latent-space, unconditional-generation, vision-models
- Language: Jupyter Notebook
- Homepage: https://learn.deeplearning.ai/courses/diffusion-models/lesson/1/introduction
- Size: 6.93 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# **How Diffusion Models Work - DeepLearningAI Crash Course**
## Overview
Learn and build diffusion models from the ground up, understanding each step. Learn about diffusion models in use today and implement algorithms to speed up sampling.
Instructor: [Sharon Zhou - @LAMINI_AI](https://x.com/realsharonzhou)
## Course Outline
- Introduction
- Intuition
- Sampling
- Neural Network
- Training
- Controlling
- Speeding Up
- Summary## Lab: Lectures & Notebooks
|Chapters|Notebooks|Demos|
|--|--|--|
|[Introduction](./lab/chapters/slides/00_intro/)|-|-|
|[Intuition](./lab/chapters/slides/01_intuition/)|-|-|
|[Sampling](./lab/chapters/slides/02_sampling/)|[L1_Sampling.ipynb](./lab/notebooks/L1_Sampling/L1_Sampling.ipynb)|-|
|[Neural Network](./lab/chapters/slides/03_neuralnet/)|[L1_Sampling.ipynb (follow-up)](./lab/notebooks/L1_Sampling/L1_Sampling.ipynb)|-|
|[Training](./lab/chapters/slides/04_training/)|[L2_Training.ipynb](./lab/notebooks/L2_Training/L2_Training.ipynb)|-|
|[Controlling](./lab/chapters/slides/05_controlling/)|[L3_Context.ipynb](./lab/notebooks/L3_Context/L3_Context.ipynb)|-|
|[Speeding Up](./lab/chapters/slides/06_speeding-up/)|[L4_FastSampling.ipynb](./lab/notebooks/L4_FastSampling/L4_FastSampling.ipynb)|-|
|[Summary](./lab/chapters/slides/07_summary/)|-|-|## References
- [Main Course - DeepLearning.AI](https://www.deeplearning.ai/short-courses/how-diffusion-models-work/)