Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/afraniomelo/kydlib
Routines for exploratory data analysis.
https://github.com/afraniomelo/kydlib
autocorrelation correlation-coefficient data-analysis data-exploration data-science data-visualization eda exploratory-data-analysis gaussian machine-learning noise nonlinear plotting python scatter-plot statistics time-series time-series-analysis visualization
Last synced: 3 months ago
JSON representation
Routines for exploratory data analysis.
- Host: GitHub
- URL: https://github.com/afraniomelo/kydlib
- Owner: afraniomelo
- License: mit
- Created: 2022-08-19T15:17:41.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-04-13T17:22:21.000Z (almost 2 years ago)
- Last Synced: 2024-10-03T00:48:33.536Z (4 months ago)
- Topics: autocorrelation, correlation-coefficient, data-analysis, data-exploration, data-science, data-visualization, eda, exploratory-data-analysis, gaussian, machine-learning, noise, nonlinear, plotting, python, scatter-plot, statistics, time-series, time-series-analysis, visualization
- Language: Python
- Homepage:
- Size: 1.06 MB
- Stars: 23
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# KydLIB: Know Your Data Library
KydLIB is a Python module that provides tools for exploratory data analysis. It is specially designed to work with time series data typically obtained from process system engineering (PSE) applications, although it can also be useful for many types of data.
There are methods for analyzing and visualizing:
* linear and nonlinear pair correlations;
* autocorrelations;
* signal-to-noise ratios;
* multivariate Gaussianity.For details on methodologies and application examples, see:
* Melo et al. (2022): Open benchmarks for assessment of process monitoring and fault diagnosis techniques: A review and critical analysis. [doi:10.1016/j.compchemeng.2022.107964](https://doi.org/10.1016/j.compchemeng.2022.107964).
* Laarne et al. (2021): ennemi: Non-linear correlation detection with mutual information. [doi:10.1016/j.softx.2021.100686](https://doi.org/10.1016/j.softx.2021.100686).
* Zhang et al. (2016): A Novel Strategy of the Data Characteristics Test for Selecting a Process Monitoring Method Automatically. [doi:10.1021/acs.iecr.5b03525](https://doi.org/10.1021/acs.iecr.5b03525).
* Feital and Pinto (2015): Use of variance spectra for in-line validation of process measurements in continuous processes. [doi:10.1002/cjce.22219](https://doi.org/10.1002/cjce.22219).## Installation
### With pip
```
pip install kydlib
```### With conda
```
conda install -c conda-forge kydlib
```
## UsageLet's download a dataset from the Tennessee Eastman Process benchmark to serve as an example:
```python
import pandas as pdurl = 'https://raw.githubusercontent.com/camaramm/tennessee-eastman-profBraatz/master/d00_te.dat'
df = pd.read_csv(url, delim_whitespace=True, header=None).iloc[:,:22]
```
To use KydLIB, we must instantiate a `Study` object providing the data to be analyzed:```python
import kydlibs = kydlib.Study(df)
```
We are now ready to do the exploratory data analysis.#### Lineplots
```python
s.lineplot()
```![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_lines.png)
#### Scatterplots
```python
s.scatterplot()
```![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_scatter.png)
#### Linear and nonlinear correlations
```python
s.corr_coef()
s.corr_coef_plot()
```
![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_correlation.png)#### Autocorrelation
```python
s.autocorrelation()
s.autocorrelation_plot()
```
![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_autocorrelation.png)#### Signal-to-noise ratio
```python
s.signal_to_noise()
s.signal_to_noise_plot()
```
![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_snr.png)#### Multivariate Gaussianity
```python
s.gaussianity()
s.gaussianity_plot()
```![](https://raw.githubusercontent.com/afraniomelo/KydLIB/main/examples/assets/tep_gaussianity.png)
## Citing
If this package has helped you in your research, consider citing:
```
@article{melo_open_2022,
title = {Open benchmarks for assessment of process monitoring and fault diagnosis techniques: A review and critical analysis},
journal = {Computers \& Chemical Engineering},
volume = {165},
pages = {107964},
year = {2022},
doi = {10.1016/j.compchemeng.2022.107964},
author = {Melo, Afrânio and Câmara, Maurício M. and Clavijo, Nayher and Pinto, José Carlos}
}
```